
Softmotion
in CoDeSys 2.3

User Manual

This manual is an add-on to the
User Manual for the

CoDeSys Programming System

Copyright  2003, 2004, 2005, 2006 by 3S - Smart Software Solutions GmbH
All rights reserved.

We have gone to great lengths to ensure this documentation is correct and complete. However,
since it is not possible to produce an absolutely error-free text, please feel free to send us your
hints and suggestions for improving it.

Trademark
Intel is a registered trademark and 80286, 80386, 80486, Pentium are trademarks of Intel
Corporation.
Microsoft, MS and MS-DOS are registered trademarks, Windows is a trademark of Microsoft
Corporation.

Publisher

3S - Smart Software Solutions GmbH
Memminger Strasse 151
D-87435 Kempten
Tel. +49 831 5 40 31 - 0
Fax +49 831 5 40 31 - 50

Last update: 03.02.2006 (CoDeSys V2.3.6.0)

Version: 2.6

Content

SoftMotion in CoDeSys 2.3 i

Content

1 Softmotion Concept and Components Overview 1-1

2 The SoftMotion Drive Interface 2-1
2.1 PLC Configuration for SoftMotion .. 2-2
2.1.1 BusInterface... 2-2
2.1.2 AxisGroup .. 2-2
2.1.3 Drive... 2-4
2.1.4 Encoder.. 2-7

2.2 SM_DriveBasic.lib and automatic Code Generation.. 2-7
2.2.1 Mathematic auxiliary modules of SM_DriveBasic.lib ... 2-7
2.2.2 AxisGroup modules.. 2-8
2.2.3 Configuration Modules ... 2-9
2.2.4 Controller Mode Modules... 2-10
2.2.5 ControlAxis function blocks.. 2-10
2.2.6 Virtual time axis.. 2-12
2.2.7 Referencing via digital hardware inputs ... 2-12
2.2.8 Diagnosis modules... 2-14
2.2.9 Encoder.. 2-15
2.2.10 Visualization templates .. 2-15

2.3 Drive Driver <BusInterfaceName>Drive.lib .. 2-15
2.3.1 SercosDrive.lib... 2-15
2.3.2 SM_CAN.lib ... 2-16

2.4 Variables of the AXIS_REF structure... 2-16
2.5 Parameterizing of the drive .. 2-20

3 The CNC-Editor in CoDeSys 3-1
3.1 Overview.. 3-1
3.2 Supported and extended elements of the CNC-language DIN66025 3-2
3.3 Start, Inserting and Managing of CNC Programs .. 3-5
3.4 CNC Text editor ... 3-8
3.5 CNC Graphic Editor ... 3-8
3.6 Commands and Options in the CNC-Editor ... 3-8
3.7 Automatic structure filling in the CNC-Editor.. 3-11

4 The CAM-Editor 4-1
4.1 Overview.. 4-1
4.2 Definition of a CAM for SoftMotion... 4-1
4.3 Starting the CAM-Editor and Inserting a new CAM.. 4-1
4.4 Editing a CAM.. 4-3
4.4.1 General Editor Settings.. 4-3
4.4.2 Editing the properties of a particular CAM element: .. 4-4
4.4.3 Commands of the 'Extras' and 'Insert' Menus.. 4-6

4.5 CAM data structures .. 4-8
4.5.1 Example for a manually created CAM ... 4-10

Content

ii SoftMotion in CoDeSys 2.3

5 The Library SM_PLCopen.lib 5-1
5.1 Overview .. 5-1
5.2 PLCopen-Specification "Function blocks for motion control, Version 1.0" 5-1
5.3 Modules for Controlling Single-Axis Motions.. 5-2
5.4 Modules for Synchronized Motion Control ... 5-15
5.5 Additional Elements of the SM_PLCopen.lib ... 5-19

6 The Library SM_CNC.lib 6-1
6.1 Overview .. 6-1
6.2 Modules.. 6-1
6.2.1 SMC_NCDecoder .. 6-1
6.2.2 SMC_ToolCorr ... 6-3
6.2.3 SMC_AvoidLoop .. 6-5
6.2.4 SMC_SmoothPath ... 6-6
6.2.5 SMC_RoundPath ... 6-8
6.2.6 SMC_CheckVelocities.. 6-9
6.2.7 SMC_Interpolator ... 6-11
6.2.8 SMC_Interpolator2Dir .. 6-15

6.3 Auxiliary Modules for Path Rotations, Translations and Scalings 6-16
6.4 Settings via global variables... 6-17
6.5 Structures in the SM_CNC.lib .. 6-17
6.6 Path-CAMs with the SMC_XInterpolator.. 6-23

7 The library SM_CNCDiagnostic.lib 7-1
7.1 Function blocks for the analysis of SMC_CNC_REF data 7-1
7.1.1 The function block SMC_ShowCNCREF ... 7-1

7.2 Function blocks for analysis of SMC_OutQueue data 7-1
7.2.1 The function block SMC_ShowQueue ... 7-1

8 The Library SM_Trafo.lib 8-3
8.1 Overview .. 8-3
8.2 Transformation function blocks .. 8-3
8.2.1 Portal Systems ... 8-3
8.2.2 Portal Systems with Tool Offset ... 8-4
8.2.3 H-Portal-System with stationary drives .. 8-8
8.2.4 2-Jointed Scara-Systems ... 8-9
8.2.5 3-Jointed Scara-Systems ... 8-11
8.2.6 Parallel Kinematics... 8-13

8.3 Spacial Transformations .. 8-15

9 The Library SM_Error.lib 9-1
9.1 Function blocks .. 9-1
9.1.1 SMC_ErrorString.. 9-1

9.2 The enumeration SMC_Error ... 9-1

10 The library SM_FileFBs.lib 10-1
10.1 Overview .. 10-1
10.2 CNC function blocks... 10-1
10.3 CAM Function Blocks... 10-3
10.4 Diagnosis function blocks... 10-3

11 Programming Examples 11-1

Content

SoftMotion in CoDeSys 2.3 iii

11.1 Overview.. 11-1
11.2 Example: Drive Interface: Create PLC Configuration for Drives 11-1
11.3 Example: Single Axis Motion Control... 11-4
11.4 Example: Single-Axis Motion Control in CFC with Visualization-Template........ 11-5
11.5 Drive Control via CAM and a Virtual Time Axis ... 11-7
11.6 Example: Changing CAMs... 11-8
11.7 Example: Drive Control via the CNC-Editor ... 11-8
11.7.1 CNC Example 1: Direct Creation of the OutQueue.. 11-8
11.7.2 CNC Example 2: Decoding online with use of variables.................................... 11-11
11.7.3 CNC Example 3: Path-Preprocessing online ... 11-13

11.8 Dynamic SoftMotion-Programming .. 11-15

12 Index IV

Content

SoftMotion in CoDeSys 2.3 iv

Chapter 1 - Softmotion Concept and Components Overview

SoftMotion in CoDeSys 2.3 1-1

1 Softmotion Concept and Components Overview

SoftMotion allows to realize movements – simple single-axis movements and CAMs as well as
complex motions in more dimensions – in the development environment of CoDeSys. Particularly
applications, where not solely the motion functionality, but also sequence and process control or
auxiliary functions are the main thing of the application, are an ideal implementation area for
SoftMotion.

SoftMotion is a kind of toolkit suitable to exert influence also during the runtime without demanding big
effort and detailed know-how for the realization of the desired motions.

The complete program logic is handled in the PLC program and just the pure motion information is
executed by the library functions.

SoftMotion can be divided in the following components:

• Drive Interface
This component is responsible for the communication with the drives. It consists of the library
Drive_Basic.lib and drive- and bussystem-specific libraries and drivers.

• In the Configuration editor in CoDeSys the developer maps the structure and configuration of the
drive-hardware. Basing on this CoDeSys – using the functions of the Drive Interface libraries -
will create IEC data structures, which represent the drives abstractedly. Automatically, i.e. without
additional effort by the IEC-programmer, the Drive Interface will communicate with the drives and
by that will take care of the topicality of the drive data structures as well as of the transfer of the
data which have been updated. Based on this structures the drive-controlling IEC program either
works with the aid of standard modules of the SoftMotion libraries (SM_CNC.lib, SM_PLCOpen.lib)
or with special modules created by the IEC programmer for this purpose.
The target value always is set cyclically, that means per each IEC task cycle target values
(positions, velocities, accelerations etc.) are calculated and transferred from the Drive Interface to
the drives. The possibility to "instruct" the drives, like setting a target position so that the drive is
moving on its own initiative and giving a message as soon as the instruction has been executed
successfully, is not provided. Reasons: In this case no coordinated movements of several axes
would be possible and the central controller did not have any influence on the drives during
executing an instruction.

PLC Configuration for SoftMotion

1-2 SoftMotion in CoDeSys 2.3

• CNC-Editor
The CNC-Editor in CoDeSys allows to program multidimensional motions, which can be
transferred and controlled via the drive interface which does the communication with the drive-
hardware. The editor works abutted to the CNC language DIN66025, synchronously in a graphical
and a text editor. Basically up to 9-dimensioned motions can be realized, whereby only two
dimensions will be interpolated not linearly. Thus in two dimensions lines, circles, parables, ellipses
and splines can be programmed, the other directions are interpolated just linearly. For each path,
which has been designed, CoDeSys automatically creates a data structure, which is available in
the IEC program.

• CAM-Editor
The CAM editor, which is integrated in the programming interface of CoDeSys and which is usable
graphically, serves to program CAMs for the controlling of multi-axes drives. CoDeSys implicitly
creates a global data structure for each programmed CAM. This structures then can be used by
the IEC program.

• CNC-Libraries
The “library "SM_CNC.lib", "SM_CNCDiagnostic.lib“and "SM_Trafo.lib" provide modules which can
be used to realize, display and execute the motions which have been programmed in the CNC-
Editor, resp. which are created during runtime.

• PLCopen-Library
The PLCopen motion control library "SM_PLCopen.lib" contains among other modules which help
to program and realize easily as well the controlling of a single axis motion but also of the
synchronized motion of two axes. Besides library elements which can be used for status checks,
for the parametrizing and for operating in general, there are also function blocks, which can move
an axis - according to the defined speed and acceleration parameters – in different ways. If two
axes should be synchronized, then one axis serves as master and controls a second axis (slave)
according to a certain prescript. This prescript e.g. can be a CAM which has been designed in the
CAM editor and which uses available POUs to link the slave axis to the master axis. Further on
there are function blocks, which allow electronic gear or phase shifts.

• File Service Library
The library "SM_FileFBs.lib" bases on the system library "SysLibFile.lib" and therefore can only be
used on target systems which are supporting this library.

• Error Library
The library "SM_Error.lib" contains all error outputs which can be produced by the modules of the
other libraries. Further on it can be used to create German and English error messages from the
numeric error variables.

•

Portability
Apart from some drivers of the Drive Interface, which are serving hardware components directly, all
SoftMotion runtime components are programmed in IEC1131-3. Thus the maximum platform
independency is reached.

For a quick understanding of the SoftMotion components it is recommended to study the
corresponding examples.

Chapter 2 - The SoftMotion Drive Interface

SoftMotion in CoDeSys 2.3 2-1

2 The SoftMotion Drive Interface
The Softmotion Drive Interface is a standardized interface, which allows to include the abstracted
image of a drive hardware in the IEC program, and to configure and address it there. It takes care of
update and transfer of the motion data which are necessary for controlling the drive hardware. This
not only allows easy changing of drives and reuse of IEC programs, but also saves the difficulties and
inconveniences of connecting the drives.

The Drive Interface uses the following components:

• The CoDeSys PLC Configuration: Here – basing on a corresponding configuration file - the
structure of the drives, which should be controlled, must be mapped by the programmer and the
appropriate parameters have to be set. This structure then will be made accessible for the
application with the aid of the Drive Interface libraries by implicitly created and assigned (system)
variables.

• The internal library Drive_Basic.lib: provides IEC data structures and global variables, which will
represent the drives, axisgroups and bus interfaces which have been configured in the PLC
Configurator.

• The driver, i.e. the hardware and bus system specific library <BusInterfaceName>Drive.lib (e.g.
SercosDrive.lib), which has to be provided by the drive manufacturer offers special functions for
the data exchange between the structures and the hardware (see 2.4).

IEC-ProgrammIEC-Program

???Drive.lib<BusInterfaceName>Drive.lib

Steuerungs-
Konfiguration

PLC
Configuration

implicit
code

generation

Drive Structures

cyclic call

PLC Configuration for SoftMotion

2-2 SoftMotion in CoDeSys 2.3

2.1 PLC Configuration for SoftMotion

(Have a look to the programming examples in Chapter 11)

The CoDeSys PLC Configuration usually provides the following elements which can be used to map
the structure of the drive hardware:

 BusInterface: Field bus interface used for the communication with the drives.

 AxisGroup: a physically linked group of drives

 Drive: Drive

 Encoder: Encoder

The bus interfaces, axisgroups and drives can get any desired but unique IEC 61131-3 identifiers:

Each of these configuration objects can be configured in dialogs if those dialogs are supported by the
target. Besides the comfortable configuration via dialogs the parameters can also be set in a
configuration list („Module parameters“). There you additionally might find target-specific parameters,
preceded by „MS.“.

2.1.1 BusInterface

Per default here only the communication driver is selected.

2.1.2 AxisGroup

Here you set the task which controls the communication with the drives, and – if it is not a cyclic task
but a event controlled task – its cycle time.

For systems without task configuration this field remains empty.

For Sercos interfaces there are further specific settings: the baud rate and the brightness of the LED.

Chapter 2 - The SoftMotion Drive Interface

SoftMotion in CoDeSys 2.3 2-3

Also for CAN axisgroups there are specific settings:

Besides the baud rate the number of the used CAN controllers is defined via the Controller no.
(regard that – if you are using a PLC with two CAN channels and additionally the library 3S-
CANopen.lib – this will automatically use Controller 0, and therefore you must select channel 1 for the
drives).

For SYNC producers you can choose between three methods for the synchronization of the drives
and the PLC:

• PLC: The PLC is acting as synchronization master. As a rule the user defines the motion task
to be a cyclic task. This task calls the driver which at once will send a SYNC-telegram. This
method is the simplest, however can lead to problems when used with controllers with high
jitter and with drives requesting high accuracy of the SYNC telegram.

• 1.Drive: The first drive (if supporting this feature) creates the SYNC-telegram. The motion task
in the PLC then as a rule is defined on the event <AxisGroup>.bSync and thus will wait until a
SYNC-telegram has been received and before starting the task processing.

• SYNC device: This method is used if the upper two are not possible. An additional device with
CAN ID 127 will be installed in the bus In den Bus, being able to create time-accurate SYNC-
telegrams (Index: 1005h, Bit30).

All these settings also can be viewed and modified in the „Module parameters“ dialog.

sTask String, complying with the name of the task, which will handle the data transfer of
this axisgroup

dwCycle Cycle time (in microseconds) of the task which is defined in "sTask"

(only to be defined if the controller does not support tasks and automatically is
calling PLC_PRG (Default task))

wParam1
...
wParam4

Card-/Drive specific parameter of type WORD

dwParam1
..
dwParam4

Card-/Drive specific parameter of type DWORD

PLC Configuration for SoftMotion

2-4 SoftMotion in CoDeSys 2.3

2.1.3 Drive

In this dialog the Drive id is defined. Further on the drive Type is selected: linear or rotary (modulo).

Concerning the Scale you have to define the conversion between the integer position values and the
technical units used in the IEC program. Thereby additionally a drive can be regarded. In the figure
shown above, a drive creating 3600000 increments for one rotation would be scaled in a way that the
technical units are in radians.

In the Settings for linear drives software endswitches can be defined, for rotatory drives the
modulo range must be defined.

In the Cyclic communications data sector define which scheduled resp. actual data should be
cyclically transferred to the drive.

In the Maximum values sector set the limits which are used by SMC_ControlBy modules in order to
detect jumps (see chapter 2.2.4, SMC_ControlAxisByPos).

In the Velocity ramp type (if supported by the included libraries) define the velocity profile type for the
velocity-generating one-axis and master/slave-modules. “trapezoid“ results in a trapezoid velocity
profile (constant acceleration in each section), “sigmoid“ results in a sin²-velocity profile (continuous
acceleration), “parabolic“ in a continuous trapezoid and thus parabolic acceleration profile.

For the modes “sigmoidal” and “parabolic” additionally the Jerk must be defined.

Chapter 2 - The SoftMotion Drive Interface

SoftMotion in CoDeSys 2.3 2-5

The following images show which effect the different ramp types have on a positioning. The position is
displayed green, the velocity red and the acceleration blue.

Trapezoid ramp mode:

There are jumps in the acceleration.

Sigmoidal ramp mode:

The jumps are eliminated. The course of the motion is
clearly defined and due to this reason the jerk cannot
be limited. The definition of the jerk is only used if the
drive already at start has an acceleration unequal 0. In
this case the acceleration will be jerk-limited run to
zero, before the actual movement will be started.
Compared to the trapezoid velocity profile this move
will last longer.

Parabolic ramp mode:

The acceleration will have a continuous, trapezoid
profile, whose gradient will be limited by the jerk. The
velocity will have a continuous parabolic profile.

Only at this profile the jerk actually can be limited.

All these settings can also be viewed and modified in the „Module parameters“ dialog.

wId ID of the drive in the axisgroup (WORD)

wControlType predefined control and return message types (WORD):

(<Send data>-> <Return data>)

1. TOR -> --- (Torque -> ---)

2. VEL -> VEL Velocity -> Velocity

3. VEL -> POS Velocity -> Position

4. POS -> POS Position -> Position

5. POS, VEL ->POS, VEL Position -> Velocity

6. VEL -> --- Velocity -> ---

7. CONFIGURABLE manual configuration via
 wCyclicDataS1, ..S2, ..S3
 and
 wCyclicDataR1, ..R2, ..R3
 (see below)

PLC Configuration for SoftMotion

2-6 SoftMotion in CoDeSys 2.3

wCyclicDataS1
wCyclicDataS2
wCyclicDataS2

wCyclicDataR1
wCyclicDataR2
wCyclicDataR3

Definition of the send (..S..)- and return data (..R..), if
wControlType is defined as 'CONFIGURABLE'; options
depending on the drive-driver; basically possible:

 Act/SetPosition Defines the position
 Act/SetVelocity Defines the velocity
 Act/SetTorque Defines the torque
 Act/SetCurrent Defines the current
 Act/SetUserDef user-defined

dwRatioTechUnitsDenom
iRatioTechUnitsNum

Denominator and numerator for the conversion factor at the
conversion of bus data to technical units [u]; (DWORD resp. INT)

iMovementType two options for the motion type: linear / rotary

fPositionPeriod Period for rotatory axes; depends on the conversion factors
'dwRatioTechUnitsDenom' and 'iRatioTechUnitsNum' (see
above)

fSWMaxVelocity Maximum velocity for software check

fSWMaxAcceleration Maximum acceleration for software check

fSWMaxDeceleration Maximum deceleration for software check

bSWLimitEnable Switching on a software position check (only linear drives), which
effects, that the axis will be set to error status as soon as leaving
the permissible position range.

fSWLimitNegative negative position limit (only linear drives)

fSWLimitPositive positive position limit (only linear drives)

bHWLimitEnable Switching on a hardware position check (only linear drives),
which effects, that the axis will be set to error status as soon as
leaving the permissible position range.

For Sercos drives a separate dialog is available:

For defining the Device type you can choose between “Drive” and “I/O-Device”, because there is no
standard CoDeSys-support for Sercos I/Os. If you select “I/O-Device“, some parameters usually
transferred by the master will be left out.

Additional cyclic communication data (besides the defaults POS, VEL, ACC, TOR, CUR) can be
transferred. For this purpose you must enter the Sercos parameter number (IDN)and length.

The entries in PackProfile check are used to check whether the settings have been done according
to the PackProfile standard. It will be differentiated between the profiles BasicA, BasicB and
Extended. Regard that this check can be performed on the offline-data. Use of the additional
configuration mechanism (Read ASCII-file on PLC), which is available for Sercos, might change the
result. For this reason in the SercosDrive.lib an additional online-check is implemented (see
documentation Sercosdrive.pdf). Besides this together with Sercosdrive.lib XML-files are provided
which can be imported in the dialog and which contain all permissible PackProfile parameters.

In the Init data section parameters can be defined to be written to the drive during startup. For this
purpose there are lists of parameters to be written to the drive in Phase2 resp. Phase3 resp. at start of
Phase4. Using the appropriate parameter list you can reach a complete initialization of the drive at the
start of the application; which might be useful, if e.g. the drive had to be exchanged (see also chapter
2.5)

Chapter 2 - The SoftMotion Drive Interface

SoftMotion in CoDeSys 2.3 2-7

Via entries in list „locked“ you can avoid an automatic transfer of single parameters by the driver.

All those settings can be saved in a xml-file (button „save“) resp. can be read from a xml-file (button
„load“).

For CAN-drives also a special dialog is available where parameters are entered which are to be
written to the drive during startup. These also can be stored and reloaded in/from xml-files.

2.1.4 Encoder

wEncoderId ID of the Encoder (WORD)

dwRatioTechUnitsDenom
iRatioTechUnitsNum

Denominator and numerator for the conversion factor of bus data (drive
increments) to technical units (units used in application, Softmotion units) [u];
(DWORD resp.. INT)

iMovementType Encoder type; Selection options: linear or rotary

fPositionPeriod Period for rotatory axes; depends on the conversion factors
'dwRatioTechUnitsDenom' and 'iRatioTechUnitsNum'

bSWLimitEnable Enable software position check (only linear drives), which effects, that later the
axis connected via SMC_Encoder will be set to error state as soon as it leaves
the position window.

fSWLimitNegative negative position limit (only linear encoders)

fSWLimitPositive positive position limit (only linear encoders)

2.2 SM_DriveBasic.lib and automatic Code Generation

If the library SM_DriveBasic.lib is included in the IEC1131 application in CoDeSys, CoDeSys will
automatically generate structure objects based on the drive image which has been configured in the
PLC Configuration editor. These structures can be accessed by the IEC program.

Besides that, to the IEC1131 application there must be linked a manufacturer specific library fitting to
the used hardware. This library must have the name <BusInterface_name>Drive.lib. It supports the
hardware-specific Drive Interface functionality. The "BusInterface_name" results from the setting
which has been made in the PLC Configuration in the module parameters of the bus interface (see
entry 'Interface Type'). From that string the left part before the first space is used (Example: "CAN
(Peak)" -> "CAN" -> the manufacturer specific library will be named "CANDrive.lib").

During start of the application the implicit call of the functions <BusInterfaceBezeichn
ung>DriveExecute_Start and <BusInterfaceBezeichnung>DriveInit at the begin of the task and
<BusInterfaceBezeichnung>DriveExecute_End at the end of the task will cause the transmission and
maintaining of the AXIS_REF-structure variables. In case of errors during initialization of the drives
the global variable g_strBootupError contains a error description, which is created by the library
<BusInterfaceBezeichnung>drive.lib.

Additionally to its main function, the representation of the drives in the IEC program, the library
SM_DriveBasic.lib also contains some auxiliary modules:

2.2.1 Mathematic auxiliary modules of SM_DriveBasic.lib

The function SMC_sgn returns the value of the sign of the input; thus –1 if the input is negative, +1 if it
is positive and 0 if it is zero.

The function SMC_fmod calculates the modulo value of the input x for period m. The return value
always is within the interval [0, m].

SM_DriveBasic.lib and automatic Code Generation

2-8 SoftMotion in CoDeSys 2.3

The function SMC_atan2 calculates and returns the angle, which solves the following equations:

 sin(alpha) * f = Sinus und cos(alpha) * f = Cosinus.

In contrast to the common ATAN function the value range in this case covers the complete interval [0;
2pi].

2.2.2 AxisGroup modules

SMC_IsAxisGroupReady

This function by a boolean variable returns whether the startup, which implicitly is done for each
axisgroup during the start or the program, has been terminated and thus the group with its axes is
operable (TRUE), or whether the startup is still going on or an error has occurred (FALSE).

SMC_GetAxisGroupState

This function block tells about the status of an axisgroup:

Inputs (VAR_INPUT) of the function block:

bEnable : BOOL
If this entry is TRUE, the module provides information on the status of an axisgroup.

In-/Outputs (VAR_IN_OUT) of the function block:

AxisGroup : SMC_AXISGROUP_REF
Axisgroup, for which information is needed.

Outputs (VAR_OUTPUT) of the function block:

bDone : BOOL
TRUE, as soon as there are valid data on the ouputs.

wState : WORD
Internal state variable of the axis.

bStartingUp : BOOL
Axisgroup startup, i.e. the drives get configured. (0 <= wState <= 99)

bNormalOperation: BOOL
Axisgroup in normal operation. (wState = 100)

bResetting: BOOL
Axisgroup just getting reinitialized. (200 <= wState <= 210)

bErrorDuringStartUp: BOOL
During startup an error occurred. (wState >= 1000)

pErrorDrive: POINTER TO AXIS_REF
Pointer on the error-causing axis. Only valid if bErrorDuringStartUp = TRUE. With the aid of this
output the erroneous axis can be removed from the axisgroup during runtime by setting the variable
DisableDriveInAxisGroup. Then the axis can be reinitialized and the drive can be continued with the
remaining axis, if there are redundancies available in the machine.

SMC_ResetAxisGroup

With this function block a complete axisgroup can be reinitialized.

Inputs (VAR_INPUT) of the function block:

bExecute : BOOL
If this input is TRUE, the module starts reinitializing the axisgroup.

Chapter 2 - The SoftMotion Drive Interface

SoftMotion in CoDeSys 2.3 2-9

bKeepRatioSettings: BOOL
If this input is TRUE, the recent drive settings (dwRatioTechunitsDenom and iRatioTechUnitsNum),
the modulo value (fPositionPeriod) and the axis type (iMovementType, linear/rotatory) will be kept and
not be replaced by the values which are set in the PLC Configuration.

In-/Outputs (VAR_IN_OUT) of the function block:

AxisGroup : SMC_AXISGROUP_REF
Axisgroup to be reinitialized.

Outputs (VAR_OUTPUT) of the function block:

bDone : BOOL
TRUE, if process is terminated.

bError : BOOL
Error occured.

nErrorID: SMC_ERROR
Error description.

2.2.3 Configuration Modules

SMC_ChangeGearingRatio

With the aid of this module the IEC program can change the gearing ratio and the type of the drive.

After execution of this module the axisgroup should be restarted by SMC_ResetAxisGroup
(bKeepRatioSettings=TRUE), in order to guarantee that all variables are initialized correctly!
Inputs (VAR_INPUT) of the module:

bExecute : BOOL
At a rising edge the module will start.

dwRatioTechUnitsDenom : DWORD
iRatioTechUnitsNum: DWORD
SoftMotionUnit–increments conversion ratio of (see 2.1).

fPositionPeriod: LREAL
Position period, modulo value (only for rotatory drives) (see 2.1).

iMovementType: INT
o: rotatory axis, 1: linear axis.

In-/Outputs (VAR_IN_OUT) of the module:

Axis : AXIS_REF
Drive for which the gearing ratio should be changed.

Outputs (VAR_OUTPUT) of the module:

bDone : BOOL
TRUE, as soon as the action has been executed.

bError : BOOL
TRUE, if error occurred.

nErrorID : SMC_Error
Error description.

SM_DriveBasic.lib and automatic Code Generation

2-10 SoftMotion in CoDeSys 2.3

2.2.4 Controller Mode Modules

SMC_SetControllerMode

If supported by the drive this module can be used to switch to another controller mode.

Inputs (VAR_INPUT) of the module:

bExecute : BOOL
Mit einer steigenden Flanke wird der Baustein aktiv.

nControllerMode: SMC_CONTROLLER_MODE
Desired controller mode: SMC_torque (torque), SMC_velocity (velocity), SMC_position (position),
SMC_current (current)

In-/Outputs (VAR_IN_OUT) of the module:

Axis : AXIS_REF (VAR_IN_OUT)
Drive for which the controller mode should be changed.

Outputs (VAR_OUTPUT) of the module:

bDone : BOOL (VAR_OUTPUT)
TRUE, as soon as action has been executed.

bError : BOOL (VAR_OUTPUT)
TRUE, if error occurred.

nErrorID : SMC_Error (VAR_OUTPUT)
Error description.

2.2.5 ControlAxis function blocks

These modules can be used to control a drive by direct setting of the desired values:

SMC_ControlAxisByPos

This function block writes target positions n to a drive structure and checks the structure for jumps.

Inputs of the function block:

iStatus: SMC_INT_STATUS
State of the Interpolation module. Gets connected with the homonymous output of SMC_Interpolator.

bEnable: BOOL

Controls the axis as long as is TRUE.

Chapter 2 - The SoftMotion Drive Interface

SoftMotion in CoDeSys 2.3 2-11

bAvoidGaps: BOOL
TRUE: The module watches position and velocity. If the velocity exceeds the limit fSWMaxVelocity,
which is stored in the axis (configured in the drive dialog in „Maximum values“), then the module will
set output bStopIpo and move the axis according to the parameters fGapVelocity, fGapAcceleration
and fGapDeceleration to this position and then will delete output bStopIpo.

fSetPosition: LREAL
Target position of the axis. Typically this is an output of the Transformation module.

fGapVelocity, fGapAcceleration, fGapDeceleration: LREAL

Move parameters for bridging a jump.

Outputs of the function block:

bCommandAborted : BOOL (Default: FALSE)
TRUE: The module has been aborted by another one.

bError : BOOL (Default: FALSE)

TRUE: An error has occurred in the module.

iErrorID : SMC_Error (INT)
Error number
bStopIpo : BOOL (Default: FALSE)
TRUE: the module has detected a jump in velocity or position and is just adjusting to the new position.
For this reason this output should be connected to the EmergencyStop-input of the SMC_Interpolator,
so that the Interpolator will wait until the axis is positioned correctly.

SMC_ControlAxisByPosVel

This module works similar to SMC_ControlAxisByPos, but additionally the velocity can be defined.

SMC_ControlAxisByVel

This module works similar to SMC_ControlAxisByPos, but the axis is not controlled by the position but
by the velocity.

SM_DriveBasic.lib and automatic Code Generation

2-12 SoftMotion in CoDeSys 2.3

2.2.6 Virtual time axis

This function block creates a time axis, which will be given out by the output Axis (AXIS_REF).

At a rising edge in input bExecute the target position of the time axis starts to count up in seconds,
starting with 0. If input bPeriodic is set, then it will restart with 0 as soon as the time given by fPeriod
has been reached.

Input fOverride gives a time multiplicator, which per default is set to 1. A "2" would make the time
running twice as fast..

Input fRampInTime defines how long the function block can take to ramp on the new override after the
new target values have been read.

In input TaskCycle define the cycle time (seconds) of that task which is calling the function block.

2.2.7 Referencing via digital hardware inputs

SMC_Homing

This function block can execute the reference move of an axis. As an ON-switch a boolean value is
used, typically a hardware input.

After the module has been started with a rising edge in bExecute, it moves the axis at a velocity
fVelocityFast in a direction defined by nDirection, until the bEndSwitch = FALSE, i.e. the reference
switch, will be closed. Then the axis will be slowed down and driven in the opposite direction
according to fVelocitySlow. The reference position will be set and the drive will be stopped at exactly
that point where the reference switch opens (bEndSwitch = TRUE).

Inputs of the module:

bExecute : BOOL (Default: FALSE)

At a rising edge the reference motion of the drive will be started.

Chapter 2 - The SoftMotion Drive Interface

SoftMotion in CoDeSys 2.3 2-13

fHomePosition : REAL
Absolute position on the reference position [u].

fVelocitySlow, fVelocityFast : REAL
Target velocity for phase 1 and 2 in [u/s].

fAcceleration, fDeceleration : REAL
Target acceleration and deceleration in [u/s²].

nDirection : MC_Direction (Default: negative)
Direction of the reference motion: permissible values: positive/negative.

bEndSwitch : BOOL (Default: TRUE)
Reference switch: TRUE (open), FALSE (closed).

fSignalDelay : REAL (Default: 0.0)
Transmission time of the reference switch in s. If a time >0 is set, the module will not use the position
at which the bEndSwitch has got TRUE as a reference position, but that position which the axis had
fSignalDelay seconds before.

nHomingMode : SMC_HOMING_MODE (Default: FAST_BSLOW_S_STOP)

FAST_BSLOW_S_STOP:
The drive will be moved to the given direction at velocity fVelocityFast (FAST) until the input
bEndSwicth gets FALSE, then will be stopped and moved to the opposite direction at velocity
fVelocitySlow (BSLOW) until bEndSwitch gets TRUE again. At this position the reference point will be
set (S) and it will be stopped (STOP).

FAST_BSLOW_STOP_S:

In contrast to FAST_BSLOW_S_STOP after the free move first a stop is done and afterwards the
reference point is set.

FAST_BSLOW_I_S_STOP:
In contrast to FAST_BSLOW_S_STOP after the first free move an index impulse
(bIndexOccured=TRUE) and its position fIndexPosition, set as reference point, will be awaited. Not
until then it will be stopped.

FAST_BSLOW_S_STOP/ FAST_BSLOW_STOP_S / FAST_BSLOW_I_S_STOP:
These modes work exactly like those described above except that there will not be turned reverse
when having reached the reference switch but will be moved on Regard that in this modes input
bIgnoreHWLimits for safety reasons must be FALSE.

bReturnToZero: BOOL (Default: FALSE)
If this flag is set, the module will set the position on the zero point after having terminated the
procedure which is defined by nHomingMode.

bIndexOccured: BOOL (Default: FALSE)
Only for nHomingMode FAST_BSLOW_I_S_STOP: Indicates whether the index pulse has occurred.

fIndexPosition: REAL (Default: 0.0)

Only for nHomingMode FAST_BSLOW_I_S_STOP: Latched position of the index pulse. If this entry is
TRUE, the hardware control of the end switches will be intermitted. Choose this option if you use the
same physical switch as hardware-end and reference switch.

bIgnoreHWLimit: BOOL (Default: FALSE)
As long as this input is TRUE, the hardware control of the end switches will not be done. Use this
option, if you are using the same physical switch for the hardware end switch and the reference
switch.

SM_DriveBasic.lib and automatic Code Generation

2-14 SoftMotion in CoDeSys 2.3

Outputs of the module:

bDone : BOOL (Default: FALSE)
If TRUE, the drive is referenced and in standstill.

bCommandAborted : BOOL (Default: FALSE)
If TRUE, the command has been aborted by another one.

bError : BOOL (Default: FALSE)

TRUE indicates an function block error.

nErrorID : SMC_Error
Error number.

2.2.8 Diagnosis modules

SMC_GetMaxSetVelocity

This function block can measure the value of the maximum (target) velocity of an axis. The measuring
will be done if bEnable is TRUE, and it will be set back to 0, as long as bResetMax is TRUE. With
dwTimeStamp you can read any DWORD (e.g. call counter), which is taken over and output with a
new maximum value.

SMC_GetMaxSetAccDec

This function block works analogically to SMC_GetMaxSetVelocity and determines the acceleration or
deceleration value which according to amount is the highest.

SMC_GetTrackingError

This function block measures the actual and maximal lag error again the dead time, which can arise
from the communication via a field bus and which is given in number of cycles (byDeadTimeCycles).
Like with SMC_GetMaxSetVelocity a time stamp (dwTimeStamp) can be used to measure the time at
the maximum.

Chapter 2 - The SoftMotion Drive Interface

SoftMotion in CoDeSys 2.3 2-15

2.2.9 Encoder

Using the PLC Configuration you can add encoders to an axisgroup and cofigure them. The data
structures if type SMC_ENCODER_REF must be processed by an instance of the SMC_Encoder
module. This instance will provide as an output an AXIS_REF data structure, which - as soon as the
output bValid has confirmed the validity of the data – will serve as an input for all other function blocks
(e.g. MC_CamIn, MC_GearIn, MC_TouchProbe).

Via the boolean input bSet the current value of the encoder can be set on the input fSetValue.

2.2.10 Visualization templates

For each of the two drive types linear / rotatory) the library contains a visualization template, which
can be linked to the axis structure (AXIS_REF) in order to visualize the current position of the drive:

 LinDrive

For a linear drive this picture will be displayed. The slide will be positioned according to its current
position relating to the lower and upper position limit and gets blue as soon as it is in regulation. It is a
precondition for the use of the template, that the parameters fSWLimitPositive and fSWLimitNegative
are set.

The template LinDrive_V will picture the drive in vertical shape.

 RotDrive

For a rotary drive this picture will be displayed. The current position is shown by the position of the
arrow and gets blue as soon as the drive is in regulation. It is a precondition for the use of the
template, that parameter fPositionPeriod is set.

2.3 Drive Driver <BusInterfaceName>Drive.lib

• Drive-driver are responsible for the communication between IEC programs, especially the
AXIS_REF-structures and the drives. They are CoDeSys libraries and contain at least the three
functions mentioned in 2.2. Those libraries typically are provided by the manufacturer and must be
included in the project.

• DummyDrive.lib is an example for drive-driver libraries and is provided with the SoftMotion-
libraries. Even if this library does not serve real drives, it works according to the same principle.

2.3.1 SercosDrive.lib

With this library, which in turn uses the external library SercosBase.lib as an interface to the
hardware, all Sercos-conforming drives can be controlled.

Similar to CAN there are function blocks for reading and writing of parameters:

Variables of the AXIS_REF structure

2-16 SoftMotion in CoDeSys 2.3

 SMC_ReadSercosParameter
 SMC_WriteSercosParameter
 SMC_ReadSercosList
 SMC_WriteSercosList
 SMC_ReadSercosString

The precise range of functions is described in document SercosDrive.pdf.

2.3.2 SM_CAN.lib

• For each connected CAN-drive – contrary to Sercos - a separate driver is needed.

• However – if this is specified accordingly in the cfg-file – commonly for all CAN-drives in the PLC
Configuration the baudrate and the number of the CAN-Controller (starting with 0) can be defined
in the axisgroup dialog. In order to keep the bus deterministically, in a CAN-channel either I/Os or
drives, but never both in time, is used. If the 3S-CANopen library should be used, that
automatically will take the first CAN controllers and so for the axisgroup another one can be
reserved.

• All CAN libraries created by 3S base on library SM_CAN.lib. It contains two modules which have
practical meaning for the user, because they can be used to simply parameters of the drive:
SMC_ReadCANParameter and SMC_WriteCANParameter. The functionality is similar to that of
the modules MC_ReadParameter and MC_WriteParameter.

2.4 Variables of the AXIS_REF structure

During compiling the project CoDeSys will create a structure variable of type AXIS_REF (defined in
SM_DriveBasic.lib, see Chapter 2.2). The structure AXIS_REF is used as an interface between
application and drive interface. Via AXIS_REF cyclic and acyclic data are exchanged.

Most variables of the structure are not relevant for the user, but are used internally by the system. The
user always should use function blocks and never directly access the structure, at least not in
a writing manner!

No Name Data type Initi value comments

1000 nAxisState INT standstill State of the Axis:
0: power_off
1: errorstop
2: stopping
3: standstill
4: discrete_motion
5: continuous_motion
6: synchronized_motion
7: homing

Chapter 2 - The SoftMotion Drive Interface

SoftMotion in CoDeSys 2.3 2-17

No Name Data type Initi value comments

1001 wControlType WORD PLC-Config* Number indicates which parts of
the structure are cyclically sended
and received.
0: defined by param 1002-1008
1: SetTorque
2: SetVelocity,ActVelocity
3: SetVelocity,ActPosition
4: SetPosition,ActPosition
5: SetVelocity,SetPosition,
ActVelocity,ActPosition
6: SetVelocity

1002
1003
1004

wCyclicDataS1
wCyclicDataS2
wCyclicDataS3

WORD PLC-Config* or Init-
FB of
<BusInterfaceName>
Drive.lib

Number of 3S parameters to be
send each cycl

1006
1007
1008

wCyclicDataR1
wCyclicDataR2
wCyclicDataR3

WORD PLC-Config* or Init-
FB of
<BusInterfaceName>
Drive.lib

Number of 3S parameters to be
received each cycle

1010 bRegulatorOn BOOL bRealDrive regulator (power) on/off

1011 bDriveStart BOOL bRealDrive set/unset halt

1012 bCommunication BOOL FALSE TRUE: Drive answers

1015 bRegulatorRealState BOOL FALSE State of the regulator

1016 bDriveStartRealState BOOL FALSE State of the halt

1020 wAxisGroupId WORD PLC-Config* Index of the axisgroup in the
configuration

1021 wDriveId WORD PLC-Config* Node number of the drive on the
field bus

1022 iOwner INT 0 Id-Number of the current owner
(FB)

1023 iNoOwner INT 0 Number of the previous and the
current owners

1024 bMovedInThisCycle BOOL FALSE has drive been moved in this IEC
cycle ?

1025 fTaskCycle REAL PLC-Config* Cycle time of task in ms

1026 bRealDrive BOOL PLC-Config* TRUE: generated by Config;
FALSE: generated by IEC

1030 bError BOOL FALSE error occurred

1031 wErrorID WORD 0 error id number

1032 bErrorAckn BOOL FALSE Acknowledge error

1035 wFBErrorID WORD 0 FB error id number

1051 dwRatioTechUnitsDenom DWORD PLC-Config* Converstion of technical units in
increments: Denominator

1051 dwRatioTechUnitsDenom DWORD 1 conversion from technical units to
increments: denominator

1052 iRatioTechUnits
Num

INT 1 conversion from technical units to
increments: numerator

1053 nDirection MC_Direction positive -1 : negative (fSetVelocity < 0),
1: positive

Variables of the AXIS_REF structure

2-18 SoftMotion in CoDeSys 2.3

No Name Data type Initi value comments

1054 fScalefactor REAL 1 Conversion from bus unit to
technical unit in techn. units per
unit received on bus

1055 fFactorVel REAL 1 Conversion from bus unit to techn.
unit/s

1056 fFactorAcc REAL 1 Conversion from bus unit to techn.
units unit/s2

1057 fFactorTor REAL 1 Conversion from bus unit to Nm or
N

1058 fFactorJerk REAL 1 Conversion from bus unit to
techn.units/s3

1060 iMovementType INT 1 0: Rotary (modulo) ; 1: Linear

1061 fPositionPeriod REAL 1000 Length of Period for rotational
systems in techn. units

1091 byControllerMode BYTE wControlType 1: Torque Control
2: Velocity Control
3: Position Control

1092 byRealControllerMode BYTE 0 actual controller mode

1100/1 fSetPosition REAL 0 Commanded position in
technical units.

1101 fActPosition REAL 0 Actual position in technical units

1105 fAimPosition REAL 0 Position of destination (for some
MC_FBs)

1106 fMarkPosition REAL 0 internal position mark

1107 fSavePosition REAL 0 internal position at begin of cycle

1110,11 fSetVelocity REAL 0 Commanded velocity in technical
units/sec

1111,10 fActVelocity REAL 0 Actual Velocity of axes in techn.
units./sec

1112,9 fMaxVelocity REAL 100 Maximum velocity in techn.
units/sec

1113 fSWMaxVelocity REAL 100 Maximum velocity for implicit
movements in techn. units/sec

1115 bConstantVelocity BOOL FALSE Axes is driving with constant
velocity

1116 fMarkVelocity REAL 0 internal velocity mark

1117 fSaveVelocity REAL 0 internal velocity at begin of cycle

1120 fSetAcceleration REAL 0 Set acceleration in techn.
units/sec2

1121 fActAcceleration REAL 0 Actual acceleration in
techn.units/sec2

1122,13 fMaxAcceleration REAL 100 Maximum acceleration in
techn.units/sec2

1123 fSWMaxAcceleration REAL 100 Maximum acceleration for implicit
movements in techn.units/sec2

1125 bAccelerating BOOL FALSE axis is accelerating currently

Chapter 2 - The SoftMotion Drive Interface

SoftMotion in CoDeSys 2.3 2-19

No Name Data type Initi value comments

1126 fMarkAcceleration REAL 0 internal acceleration mark

1127 fSaveAcceleration REAL 0 internal acceleration at begin of
cycle

1130 fSetDeceleration REAL 0 Commanded deceleration in
techn.units/sec2

1131 fActDeceleration REAL 0 Actual deceleration in technical
techn.units/sec2

1132,15 fMaxDeceleration REAL 100 Maximum deceleration in
techn.units/sec2

1133 fSWMaxDeceleration REAL 100 Maximum deceleration for implicit
movements in techn.units/sec2

1135 bDecelerating BOOL FALSE Axis is currently decelerating

1137 fSaveDeceleration REAL 0 internal deceleration at begin of
cycle

1140 fSetJerk REAL 0 Commanded Jerk in
technical units /sec3

1141 fActJerk REAL 0 Actual Jerk in technical units /sec3

1142,16 fMaxJerk REAL 100 Maximum Jerk in techn. units /sec3

1143 fSWMaxJerk REAL 100 Maximum Jerk for implicit
movements in techn. units/sec

1146 fMarkJerk REAL 0 internal Jerk-Mark

1150 fSetCurrent REAL 0 Set current (A)

1151 fActCurrent REAL 0 Actual Current (A)

1152 fMaxCurrent REAL 100 Maximum Current (A)

1153 fLimitCurrent REAL 0 Maximum current for implicit
movements in techn. units/sec

1160 fSetTorque REAL 0 Commanded torque in Nm resp. N
(linear)

1161 fActTorque REAL 0 Current torque in Nm resp. N
(linear)

1162 fMaxTorque REAL 0 Maximum torque value in Nm resp.
N (linear)

1200,2 fSWLimitPositive REAL 0 Position limit in positive direction in
techn.units/sec2

1201,3 fSWLimitNegative REAL 0 Position limit in negative direction
in techn. units

1202 fCaptPosition REAL 0 Capture position in techn. units

1205 bSWLimitEnable BOOL FALSE Enable Software end switch

1204 bSWEndSwitchActive BOOL FALSE Software end-switch active

1206 bHWLimitEnable BOOL FALSE Enable / disable hardware end
switch (to be used after overtravel)

1207 bCaptureOccurred BOOL FALSE Capture signal occurred
(acknowledged by writing)

1208 bStartCapturing BOOL FALSE Start/stop capture of the current
trigger

Parameterizing of the drive

2-20 SoftMotion in CoDeSys 2.3

No Name Data type Initi value comments

1210 bStartReference BOOL FALSE TRUE: start reference

1211 fReference REAL 0 Reference position

1215 fOffsetPosition REAL 0 Shift of zero point

1220 fFirstCapturePosition REAL 0 Window start position for capture

1221 fLastCapturePosition REAL 0 Window end position for capture

1222 tiTriggerInput TRIGGER_R
EF

 Description of the capture input

1223 bCaptureWindowActive BOOL FALSE Capture limited to window

1230 dwPosOffsetForResiduals DWORD 0 Internal variable for residual values'
handling

1231 dwOneTurn DWORD 0 Internal variable for residual values'
handling

1232 fLastPosition REAL 0 Internal variable for residual values'
handling

1234 iRestNumerator INT 0 Internal variable for residual values'
handling

1235 iTurn INT 0 Internal variable for residual values'
handling

1236 dwBusModuloValue DWORD 0 internal variable for residual values'
handling

1237 dwPosOffsetForResiduals
Homing

DWORD 0 internal variable for residual values'
handling

1300 bDisableDriveInAxisGRou
p

BOOL FALSE remove drive from axisgroup

1301 bErrorDuringStartup BOOL FALSE will be set, as soon as an error
occurs during startup

 pMS POINTER TO
BYTE

0 Pointer to hardware specific
structure
<BusInterface>_AXIS_REF

Each AXIS_REF structure variable behaves according to the PLCopen-Specification „Function blocks
for motion control“, Version 1.0.

2.5 Parameterizing of the drive

Many important configuration data are stored in the drive. Though SoftMotion allows to set parameter
values in the PLC Configuration, which are transferred during (see 2.1.3), this is difficult to do for the
user, because normally he does not know, which parameters are to be transferred and which values
they should get. Thus often for the start-up (also for several machines of the same series) and for an
exchange of the drives drive-specific tools are needed. For this reason a functionality is integrated in
SoftMotion which at least partly will take over this parameterization.

Thus there are the following alternatives:

(A) The user configures the drives with the help of a tool provided by the manufacturer. He goes
online with a SoftMotion project, where the drives are registered and calls a module reading all
drive parameters and saving them to a XML-file on the PLC. This file will be re-load by the user
and the data will be written to the appropriate configuration dialog in CoDeSys. Now all required

Chapter 2 - The SoftMotion Drive Interface

SoftMotion in CoDeSys 2.3 2-21

parameters are saved in the project and will be always transferred during start. Neither at the
start-up of further machines nor at replacing a defect drive the start-up-tool would be needed.

(B) The user configures the drive with the help of the tool provided by the manufacture. In the
application program he arranges that the user via a function block can save the drive
parameters in an ASCII-file on the controller. In contrast to a. the parameters are stored in a
file on the PLC and not with the application.

Both solutions have assets and drawbacks: If you want to change a parameter subsequently with (A),
the project must be re-loaded. With (B) this is not necessary, however it must be taken care, that at
each start-up of a machine either the parameter files get stored on the controller or the drive start-up-
tool must be used.

SMC_WriteDriveParamsToFile

This module reads all configuration parameters of the drive and stores them to a file. As this is a file
access, possibly blocking the processing of the application for several milliseconds, it may not be
called in the motion task, but should be executed in a lower prioritized task.

Which parameters should be read the module learns from the drive-driver, which in turn this learns
from the drive itself (Sercos) or which gets a default-parameter list (for CAN: see global variables list
of the standard 3S drivers). For CAN drives an own list of the same format can be created and given
to the drive via the following assignment:
<Drive>_MS.pParameterlist := ADR(<NewList>);

In-/Outputs of the module:

bExecute: BOOL
TRUE starts the module.

sFileName: STRING(255)
File name.

bXMLFormat: BOOL
If this variable is TRUE, the file will be created in XML format (and subsequently can be imported in
the drive dialog), otherwise in text format (can be stored on the controller and get re-loaded and
forwarded by the drive-driver during start-up).

Axis: AXIS_REF
Drive, whose parameters should be read.

bDone: BOOL
Action terminated.

bError: BOOL
Error occured.

nErrorID: INT
Error ID (see 9.2)

Parameterizing of the drive

2-22 SoftMotion in CoDeSys 2.3

Chapter 3 - The CNC-Editor in CoDeSys

SoftMotion in CoDeSys 2.3 3-1

3 The CNC-Editor in CoDeSys

3.1 Overview

The CNC-Editor in CoDeSys allows to program multi-dimensional motions graphically and textually in
parallel, following the CNC language DIN66025. For the CNC language see chapter 3.2 , concerning
the text editor see chapter 0, programming examples you find in chapter 11.

Basically up to 9-dimensional motions can be realized, whereby only two dimensions are not
interpolated linearly. Thus in two dimensions lines, circles, circular arcs, parables and splines can be
programmed; the other directions merely get interpolated linearly.

For each programmed path CoDeSys automatically creates a global data structure (CNC Data), which
can be used by the IEC program.

This can be done in different ways:

a The CNC program is stored as an array of G-Code-Words and will be decoded during runtime of
the PLC program with the aid of a decoder module. Thus for the particular path objects GEOINFO
structure objects will be available. path-preprocessing modules (see SM_CNC.lib, e.g. Tool
Radius Correction), afterwards interpolated, transformed and returned to the Drive Interface for
the communication with the hardware. (see command 'Create program variable on compile')

b The CNC program is written as a list (OUTQUEUE-Structure) of GEOINFO structure objects to a
data structure and thus can directly be fed to the interpolator. In comparison to a) by this method
you can avoid calling the Decoder and the Path Preprocessing Modules. But in exchange you do
not have the possibility to change the program during runtime. (see command 'Create OutQueue
file on compile')

c The CNC program is written as described in a resp. b to the file system of the controller and is
read and executed at runtime step by step. This method particularly is suitable for big programs,
which cannot be kept completely in the memory.

Supported and extended elements of the CNC-language DIN66025

3-2 SoftMotion in CoDeSys 2.3

3.2 Supported and extended elements of the CNC-language DIN66025

In order to provide an easy way for programming geometric motion profiles SoftMotion supports parts
of the CNC language DIN66025. Since the whole SoftMotion concept is embedded in the much more
powerful language IEC61131, only those parts of DIN66025 are supported, which serve to create
a path.
Prescribed structure of a CNC program:

%
N<number> G<number> ...
...
N<number> G<number> ...

Example:
% example
N10 G01 X100 Y100 E100 F100 E-200
N20 G01 Z40 F20
N30 G03 X-100 R200 F100
...

A SoftMotion CNC program must start with a "%". In the same line optionally can be added –
separated by an empty space or by a TAB – the program name. The actual CNC program is
composed of several sentences.

Each sentence (line) consists of as many words as needed.

A word consists of a letter (word identifier) and a subsequent number (e.g. G01; see also the list
below). There is no case sensitivity and leading zeros are ignored (G01 = g1).

The first word of each sentence is built by the sentence number (N<number>), e.g. "N01". The
sentence number currently does not have any effect, but is expected for conformity reasons. The
words of a sentence are separated by empty spaces of TABs. They are processed from the right to
the left. Thereby all words except for the positioning command (G<number>, e.g. "G02"; see the list
below), will effect that the sentence number will be assigned to a variable as defined by the sentence
letter. This variable finally will be accessed by the positioning command.

Each sentence only may contain one instruction, which must follow right to the sentence number. If
you do not enter an positioning command in a sentence, automatically that of the last sentence will be
added.

Each positioning command can be seen as a path object (line, arc, …). The velocity at which the path
objects are interpolated, basically complies with the scheduled velocity (command speed), -
acceleration and - deceleration. The Interpolator must make sure that these limits are not exceeded.
The velocity during the transition of two adjacent objects is determined according to the following
rules:

• One of both objects is a positioning (G0): Transition velocity = 0

• The angle between the tangents of the two objects at the transition is bigger than the angle
tolerance: Transition velocity = 0

• Otherwise: The transition velocity is the lower command speed of the both path objects.

Basically a position command effects that there will be an interpolation from the target position of the
last positioning command to the target position specified by the current positioning command. The first
positioning command starts at the specified position (specified in the Decoder or CNC-Editor). If that
position has not been defined, it will start at X=0, Y=0, Z=0. Additionally there is the possibility to set
the position in the CNC program via G92. This is allowed at the beginning of the CNC program (there
it will set the start position) as well as in the middle where it will result in a jump of the target position
to the position defined by G92. If there are several successive G92-commands, the last will be
regarded; the preceding ones will be skipped. If you however want to make sure that also the
preceding G92 positions are given out (for the length of one cycle), you must insert command G1 with
identic coordinates between. This means is used if the path between those positions is not of interest,
but the target position should get there as fast as possible. The modules SMC_ControlAxisByPos in
this case detect a jump of the target positions, stop the interpolator and interpolate each axis
separately on the fastest way to the target position. Example:

Chapter 3 - The CNC-Editor in CoDeSys

SoftMotion in CoDeSys 2.3 3-3

G92 X100 Y100 (Set target position to 100/100)

G1 X100 Y100 (make sure a one-time output of the position)

G92 X50 Y100 (Set target position to 50/100)

A sentence starting wit the character "/" will be skipped during processing, if the option Step Suppress
is activated .

Characters which are embraced by parenthesis "()", will be interpreted as comments and do not
have any effect on the programmed path. Nested comments are not supported.

The line number (N<number>) currently has no meaning, but is expected for conformity reasons.

All numbers except for that of the running order (G<number>) and the switch number (H<number>)
can be floating values.

The Switch functionality (or H-option) enables the programmer to operate binary path-dependent
switches. Basically always first the number of the switch must be specified ("H<number>"), then the
switch position must be defined, either absolutely by using the word "L<position>" or relatively by
using the word "O<position>". In the following example switch2 is turned off at position X=40/Y=25
(after a fourth of the object):

N90 G1 X20 Y20

N100 G1 X100 Y40 H-2 O0.25

Regard that a the number of possible switches within one path object is limited (MAX_SWITCHES).

Regard: For each path object only a limited number of switch point switch actions (MAX_SWITCHES) can be
processed.
A switch point position only can be inserted in the CNC text editor! It will be displayed in the graphic
editor as a green point on the path..

Via the additional options or M-options a binary output can be set, which starts another action. In
this case in contrast to the switch points it will be waited at the current position until the M-function has
been confirmed by setting an input. This often is used if the further processing of the program
depends on other processes. The following line e.g. would start the M-function 10 and wait until this
gets confirmed:

N90 M10

Additionally there is the possibility to use global variables instead of variables. These must be
embraced by two $-signs (e.g. R$g_fVar$).

Word identifiers :

D Tool radius (for correction G40-42 resp. for 'Round of Path' G50-51)

E max. acceleration (>0) / deceleration (<0) [path-units/sec2]

F Velocity [path-units/sec]

G Instruction (see below)

H Switch on Switch point (>0) / Switch off (<0)

I X-coordinate of the circle-/ellipse centre (G02/G03/G08/G09) – or
X-coordinate of the parable-tangent-intersection-point

J Y-coordinate of the circle-/ellipse centre (G02/G03/G08/G09) – or
Y-coordinate of the parable-tangent-intersection-point

K Direction of the ellipse main axis in mathematical sense (0° W, 90° S,...)

L absolute switch position (see above, "H"), measured from start position (>0) resp. end position (<0)

Supported and extended elements of the CNC-language DIN66025

3-4 SoftMotion in CoDeSys 2.3

of the path object

M additional option, M-option

O relative switch (see above, "H") position [0..1]

P Target position of the additional axis P

Q Target position of the additional axis Q

R Radius (G02/G03) – alternatively to "I","J" or length relation subaxis/main axis (G08/G09) [0..1]

S Switch on (>0) / off (<0) the S-profile for linear axes
3: Z-axis, 7: P-axis, 8: Q-axis, 9: U-axis, 10: V-axis, 11: W-axis

U Target position of the additional axis U

V Target position of the additional axis V

W Target position of the additional axisW

X X-coordinate of the target position

Y Y-coordinate of the target position

Z Target position of the additional axis Z

Drive instructions:

G00 direct movement without tool contact, Positioning

G01 linear (straight) movement with tool contact

G02 Circle(-segment) clockwise

G03 Circle(-segment) counter clockwise

G05 Point of a cardinal spline

G06 Parable

G08 Ellipse(-segment) clockwise

G09 Ellipse(-segment) counter clockwise

G40 End of the tool radius correction

G41 Start the tool radius correction to the left of the work piece

G42 Start the tool radius correction to the right of the work piece

G50 End of round-off-path/slur-path function

G51 Start the slur-path function

G52 Start the round-off-path function

G60 End of the avoid-loop function

G61 Start of the avoid-loop function

G90 Start interpreting the following coordinate values (for X/Y/Z/P-W) as absolute values (default)

G91 Start interpreting the following coordinate values (for X/Y/Z/P-W) as relative values

G92 Setting the position without move

G98 Start interpreting the following coordinate values of I/J as absolute values

G99 Start interpreting the following coordinate values of I/J as values relative to the starting point
(standard)

Chapter 3 - The CNC-Editor in CoDeSys

SoftMotion in CoDeSys 2.3 3-5

Please regard that the library "SM_CNC.lib " must be included to enable an error-free compilation of
the project.

3.3 Start, Inserting and Managing of CNC Programs

The CNC-Editor is to be started in the ‚Resources’ tab in the Object Organizer. A tripartite window will
open, the title is 'CNC program list'. In the left column there is a list of the existing programs. The
upper right window part serves as a text editor, where the CNC program can be written according to
DIN66025. In the lower right part the program will be displayed graphically and finally you can modify
the program it in the text or in the graphic part. In each case it will be updated automatically in the
other part.

In the menu bar the item 'Insert' will be replaced by 'CNC program' as long as the CNC-Editor is
active.

Insert a new CNC program:

Set the cursor to the CNC program list and choose command 'New CNC program' in the menu 'CNC
program' or in the context menu. A dialog will open where the name for the new program will be
defined. By default the CNC programs get the name "_CNC<n>", where n is a running number,
starting with "1". You can edit the default name in the dialog, but you cannot use an already existing
name. After having closed the dialog with OK the new program name will appear (shaded) in the list.
In the text editor the first program line is displayed: "% comment", the graphic editor still is empty.

The currently selected program can be edited in the Text editor as well as in the Graphic Editor.

Delete CNC program

Select the program in the CNC program list and choose the command 'Delete CNC program' in the
menu 'CNC program' or in the context menu. The program will be removed from the list and the focus
will be set to the subsequent one.

Rename CNC Program

Select the program in the CNC program list and choose command 'Rename CNC program' in the
menu 'CNC program' or in the context menu. The dialog 'Program name' will open where you can edit
the program name.

Start, Inserting and Managing of CNC Programs

3-6 SoftMotion in CoDeSys 2.3

CNC-Program Info

Select a program in the CNC program list and choose command 'Info' in the menu 'CNC program' or
in the context menu. The window CNC program information will open and provide information on the
program.

Define queue size

This command opens the dialog Size of queue data buffer, where you can define the buffer size of
the OutQueue. This is of main interest when only limited memory space is available for the NC
function blocks in the IEC program, so that not all GeoInfo objects can be stored there and the ring
buffer functionality must be used. Thus special effects can occur (e.g. slowing down at points without
deviation), which you can simulate and reproduce by using this function.

Possible values: 5000 – 100 000 Bytes. With OK the settings are applied.

Define start position

In the dialog Define start position you can set the coordinate values for the start position (default: 0)
of the path for simulation purposes. For the following axes you can enter a start position: X, Y, Z, P, Q,
U, V, W.

Set angle leeway for stop

In the dialog Set angle leeway for stop the sensitivity for a sharp bend of the path can be set. Insert
the angle (0 .. 180) between the tangents of two path objects which will cause a stop.

Example: Maximum tolerance angle: 45°:

Move program

This command will open the dialog translation vector where you can define a vector by which the
CNC program will be shifted. You can insert values for the following axes: X, Y, Z, P, Q, U, V, W.

Rotate program

Use this command if you want to rotate the current program. In the dialog Rotation angle insert the
desired angle. The program will be rotated accordingly counter clockwise around the zero point.

Stretch program

This command opens the dialog Stretch coefficient. Insert here the factor by which the NC program
should be stretched.

Chapter 3 - The CNC-Editor in CoDeSys

SoftMotion in CoDeSys 2.3 3-7

Invert direction

If you choose this command the path will be inverted in order to get processed in the reverse
direction. The switch positions will stay as they were before.

Split object

This command opens a dialog where you can define for the currently selected path object a Split
position. Enter any value between 0 (start position of the current object) and 1 (end position) to mark
the desired position where the object should be split to two objects.

Example: Object N10 will be divided at position 0.5:
...
N0 G01 X123.000000 Y73.550000
N10 G01 X40.0 Y50.0
...

Result: new object (additional position) at X=20
...
N0 G01 X20.000000 Y40.000000

N10 G01 X40.000000 Y50.000000

N20 G01 X123.000000 Y73.550000
...

The resulting new Y-subposition will be automatically adapted according to the path progression.

Read CNC program from file

You can load a CNC program which is stored in a file in ASCII format. The standard dialog for opening
a file will be available, where you can select the desired *.txt-file. In the next dialog you must insert a
name for the program before it can get loaded to the editor.

Write CNC program to file

You can write the current CNC program to a file in ASCII format (*.txt). If the file you define is existing
already, CoDeSys will ask for a confirmation.

Import DXF file

Use this command if you want to import a DXF file to your CNC program. The standard dialog for
opening a file will be opened where you can browse for the desired DXF file. Then the dialog DXF
import options will open, where you enter a base name for the CNC program(s) (Program base
name:) which should be created from the DXF file and where you activate one of the following
options:

• One NC program for whole DXF file: all paths described in the DXF file will be written to one
CNC program

• One NC program for each DXF layer: for each DXF layer a separate CNC program will be
created

• One NC program for each coherent segment: for each coherent path segment: a separate
CNC program will be created. Due to the fact that in a DXF file the single path objects are stored
without a certain order, CoDeSys tries to connect the objects in a way that results in a coherent
path.

Write outqueue to file

. With this function you can convert the complete CNC program to an OutQueue, which is a list of
GEOINFO structures objects, and save this list in a file which then can be downloaded to the
controller's file system and can be read there during run time (see chapter 3.1, option (b). It is
recommended to proceed in this way, if you have CNC programs, which are to big for the global data
memory of the controller or which must be exchanged without a change of the CoDeSys project.

CNC Text editor

3-8 SoftMotion in CoDeSys 2.3

3.4 CNC Text editor

The text editor is in the upper right part of the 'CNC program list' window. Here you can enter and
modify a CNC program according to DIN66025 (see Chapter 3.2 for the supported elements). The
program will be displayed accordingly in the graphic Editor and can be modified there. In this case the
text part will be updated vice versa.

For working in the editor there are commands available in the menus 'CNC program' and 'Extras'. See
a description in chapter 3.5, Graphic Editor.

(Hint: Have a look to the programming examples in Chapter 1)

By pressing <F2> the input assistant will open and you can select global variables to be inserted in
the CNC program. The variables will be displayed in the graphic editor by their initial value (if
available).

Note: Please regard, that references to global variables in the Decoder module will be evaluated as soon as
a rising edge in input 'Execute' occurs.

If you have chosen variant b, which makes CoDeSys creating a ready OutQueue-structure during
compilation, then the reference on the global variable of course will be replaced by the initial value
already during compilation which makes the use of global variables senseless in this context.

3.5 CNC Graphic Editor

The graphic editor is in the lower right part of the CNC program list window. On the one hand it
visualizes the CNC program which is described in the text editor, on the other hand also in the graphic
editor you can modify the program using the mouse and these changes will be updated automatically
and immediately in the program text in the upper window part.

Display:

A coordinate system is displayed. There are pitch lines marking the intervals on the coordinate axes
and additionally a light-grey colored grid can be displayed, which can switched on and off via the
command Show grid (Extras menu resp. context menu).

By keeping pressed the left mouse-button, the display of the CNC program can be moved as desired.
Using mouse-wheel and <Ctrl>-key the zoom factor can be changed.

Positionings (G00) are displayed green-colored, all other elements blue-colored. The currently
marked object (the cursor is placed on the corresponding code line in the text editor), is displayed
red-colored.

For Splines (G05) the convex mantle of the cubic poynoms is displayed light grey-colored.

3.6 Commands and Options in the CNC-Editor

The 'Extras' menu provides commands and options for the working and the display in the editor. (Of
course you also can program by entering the corresponding instructions in the text editor). Additionally
in the toolbar the appropriate buttons are available. An activated option gets marked by a check in the
'Extras' menu and the button in the toolbar appears pressed.

You can choose one of the following edit modes:

 Select mode

 Line-Insert Mode

 Circle CW Insert Mode

Chapter 3 - The CNC-Editor in CoDeSys

SoftMotion in CoDeSys 2.3 3-9

 Circle CCW Insert Mode

 Spline Insert Mode

You can set the view and path correction options via the following commands:

 Fit to Screen

 Renumber program

 Show grid

 Convert splines/ellipses to lines

 Step Suppress

 Show Interpolation points

 Tool radius correction

 Round off path

 Slur path

 Avoid loop

 Set epsilon values

Note: It is possible to choose more than one of the options 'Tool correction', 'Round off path', 'Slur path' and
'Avoid loop'. Thus the effect of series connected path-preprocessing elements can be simulated. Only
the preprocessing options 'Tool correction' and 'Round off path' resp. 'Slur path' cannot be activated
at the same time.

'Extras' 'Select Mode'

 If this option is activated, you can select a graphic element in the CNC-Editor by a mouse-click. A
selected element will be marked red-colored and in the text editor the corresponding line will also be
marked. By a click on the end point of an element and keeping the mouse-button pressed the element
can be shifted by moving the mouse.

'Extras' 'Line Insert Mode'

 If this option is activated, a mouse-click within the editor panel will insert a G01 line element. The
line will start behind the currently selected (red marked) element. The mouse position defines the
second (end) point of the line.

'Extras' 'Circle CW Insert Mode'

 If this option is activated, a mouse-click within the editor panel will insert a G02 circle element,
used for a motion of clockwise rotation. The new element will be inserted behind the currently marked
(red-colored) element. The mouse position defines the second (end) point. The radius of the circle will
be set to 100 by default and – if necessary – must be modified in the text editor.

Commands and Options in the CNC-Editor

3-10 SoftMotion in CoDeSys 2.3

'Extras' 'Circle CCW Insert
Mode'

 If this option is activated, a mouse-click within the editor panel will insert a G03 circle element
which is used for a motion of counter clockwise rotation. The new element will be inserted behind the
currently marked (red-colored) element. The mouse position defines the second (end) point. The
radius of the circle will be set to 100 by default and – if necessary – must be modified in the text
editor.

'Extras' 'Extras: Spline Insert
Mode'

 If this option is activated, a mouse-click within the editor panel will insert a Spline. That will be
placed behind the currently marked (red-colored) element. The mouse position defines the second
(end) point of the spline.

'Extras' 'Extras: Fit to Screen'

 If this option is activated, the visible part of the window will show the complete NC program.

'Extras' 'Renumber program'

 This command automatically renumbers the program, assigning new line numbers (N<number>)
in decimal steps.

'Extras' 'Show grid'

If this option is activated in menu 'Extras', a visible grid will be added to the graphic editor.

'Extras' 'Convert
splines/ellipses to lines'

Splines and ellipses need a lot of computing time for interpolation. In order to reduce this time, use
this command to approach all splines and ellipses of the NC program by a number of lines. Thus for
designing the path splines and ellipses can be used but those must not be computed during run time.

The command opens a dialog providing two options for the conversion:

a) length dependent, i.e. per x length units (number x can be inserted in the dialog) of the
spline/ellipse a line will be created, or

b) angle dependent, i.e. the original object will be partitioned in a way that the arising lines will
include angles lower then x (angle x [degrees] can be inserted in the dialog).

Hint: Using the default settings will effect, that at the interpolation of the line – contrary to spline/ellipse – after
each part of line there will be a deceleration to velocity 0. You can avoid this by increasing the angle
tolerance correspondingly.

'Extras' 'Extras: Tool radius
correction'

 If this option is activated and if in the CNC program the start (G41/G42) and the end (G40) of the
of the path segment, where the correction should be done, are defined as well as a tool radius
(D<angle>) , then the accordingly corrected path will be displayed. This menu item corresponds to the
SMC_ToolCorr module which is part of the library SM_CNC.lib. The original path will be colored light-
grey. Positionings of the corrected path are "blind" positions and therefore are colored dark-yellow.

'Extras' 'Slur path'

 If this option is activated, the programmed path will be displayed, showing the effect, the function
block SMC_SmoothPath (SM_CNC.lib) has on the originally programmed path. That creates a slured
path through the cubic polynom (spline). Preconditions: In the CNC program the start (G51), the end

Chapter 3 - The CNC-Editor in CoDeSys

SoftMotion in CoDeSys 2.3 3-11

(G50) of the path segment, where the correction should be done, as well as the rounding radius
(D<angle>) must be set. The original path will be displayed as a reference, colored light-grey.

'Extras' 'Round off path'

 If this option is activated, the rounded-off path will be displayed, showing the effect, the function
block SMC_RoundPath (SM_CNC.lib) has on the originally programmed path. Preconditions: In the
CNC program the start (G52) and the end (G50) of the path segment, where the correction should be
done, as well as the rounding radius (D<angle>) must be defined. The original path will be displayed
as a reference, colored light-grey.

'Extras' 'Avoid loop'

 If this option is activated, that path will be displayed which results if loops are cut. This means
that, if the path crosses itself, at the crossing points the loop part will be deleted, which shortens the
path. So loops can be avoided. This command corresponds to the effect of the funktion block
SMC_AvoidLoop (SM_CNC.lib). Preconditions: In the CNC program the start (G61) and the end (G60)
of the path segment, where the correction should be done, must be defined. The original path will be
displayed as a reference, colored light-grey.

'Extras' 'Extras: Step Suppress'

 If this option is activated, all lines of the text editor starting wit "/" will be ignored.

'Extras' 'Extras: Show
Interpolation points'

 If this option is activated, interpolation points will be displayed in 100 ms pulse, this means that
the tool positions will be indicated by small grey crosses every 100 ms. Thus a rough estimation of the
velocity behaviour (fast = long distances, slow = small distances) is possible.

'Extras' 'Set epsilon values…'

The internal check of a value x for zero must be replaced by an examination for x < ε because of the
inaccuracy of a floating point calculation. The size of the ε-value eventually (e.g. if 32 bit floating point
values are used instead of 64 bit, or at import of a CNC program with limited accuracy) must be
adapted. For this purpose use the dialog Zero tolerance values, which will be opened by the here
described command.

Please regard: For standard use any modification of the tolerance values should not be necessary and should be
avoided.!

3.7 Automatic structure filling in the CNC-Editor

As soon as the IEC program is compiled, automatically a global variables folder "CNC Data" will be
created.

There the CNC programs will be stored in homonymous data structures.

According to chapter 3.1, 'Text editor - Overview' you can choose between three possible options a-c
for each CNC program, which can be selected in the menu 'CNC-Program’ in the text editor:

(1) Create program variable on compile
This option corresponds to variant a) (see chapter 3.1)

The CNC program is stored to a structure SMC_CNC_REF which is defined in the library
SM_CNC.lib. This structure

Automatic structure filling in the CNC-Editor

3-12 SoftMotion in CoDeSys 2.3

Obwohl diese Variante erhöhten online-Rechenbedarf hat, bietet sie die Möglichkeit, Variablen im
NC-Programm zu verwenden, bzw. Modulationen des NC-Programms durch das SPS-Programm
vorzunehmen.

(2) Create OutQueue file on compile
This option corresponds to variant b) (see chapter 3.1)

The CNC program is stored in a structure SMC_OUTQUEUE which is defined in the library
SM_CNC.lib. This structure variable can be passed on directly to the Interpolator module.

So no variables can be used in the path, but the advantage of this method is the minimized demand
of online ressources.

(3) Don't compile

This option corresponds with option (b described in chapter 3.1. You have stored the program as an
ASCII or as an OutQueue file in the file system of the controller and you want to read it at run time
by one of the modules described in 10.2, 'CNC function blocks'. For this reason it should not be
added to the IEC data.

Chapter 4 - The CAM-Editor

SoftMotion in CoDeSys 2.3 4-1

4 The CAM-Editor

4.1 Overview

The SoftMotion CAM disc (CAM-Editor) is integrated in the CoDeSys programming interface. Here
you can graphically and tabularly create programs of electronic CAM discs and CAM switches, for
which CoDeSys automatically will create global data structures (CAM Data) during the compilation of
the project. This structures can be accessed by the IEC program.

For the preprocessing of the CAMs in the IEC program the functions and function blocks defined by
PLCopen are used. (Library SM_PLCOpen.lib).

(Hint: Have a look at the programming examples in Chapter 11)

4.2 Definition of a CAM for SoftMotion

A CAM describes – seen in a simplified manner - the functional dependence of a value (Slave) on
another (Master).

In order to describe this dependency the master-axis is divided up in different segments. For each
segment (interval [a,b]) CoDeSys provides two possibilities to image a functional mapping of the
master axis on the slave-axis:

• Line: The dependency is described by a linear image. In this kind of segment the first derivative
(velocity) is constant, according to the slope of the line, the second derivative is 0.

• 5 exponent Polynom: In this kind of segment the dependency is described by a 5-exponent
polynomial. Thus the first and the second derivative become 4- and 3-exponent polynomials.

The functions in these segments must follow on each other in a way that at the transition points as
well the function value as also at least the first and second derivatives are continuous.

In the CAM-Editor single base points and lines can be inserted. The remaining sections between will
be filled up automatically by the editor with 5-exponent polynomials. Thereby the requirements
concerning continuity and differentiation are regarded.

Along a line the function value, the first derivative (velocity, in this case constant) and the second
derivative (acceleration, in this case always 0) are defined. A point however can be defined with any
first and second derivative.

Additionally the user has the possibility to place tappets, i.e. binary position switches, on the CAM
disk.

4.3 Starting the CAM-Editor and Inserting a new CAM

Start

The CAM-Editor is started in the 'Resources' tab. A tripartite window, titled 'CAM program list' will
open. As long as no CAM has been defined, the window is empty.

In the lower right part of the window three different types of display can be chosen (see Menu Extras):
Visualization of the first (blue curve, velocity) and second (green curve, acceleration) derivatives,
Visualization of a table showing all CAM elements (points/lines) or Visualization of a table showing all
CAM switches (tappets). The tables can be edited.

The menus 'Insert' and 'Extras' (see chapter 4.4.1, General editor settings) provide commands for the
creation and editing of CAMs.

Starting the CAM-Editor and Inserting a new CAM

4-2 SoftMotion in CoDeSys 2.3

'Extras' 'Create new CAM'

Choose the command 'New CAM' in the 'Insert' menu or in the context menu and do the desired
settings:

Name of CAM: A name for the new CAM
Type: A CAM contains CAM elements (points, lines) as well as tappets. A Digital

CAM table only contains tappets.
Scaling master axis: Define here the scaling of the master axis. If option 360° is activated, the

settings Minimum, Maximum, Step and Unit will be set automatically (0,
360, 20, °); otherwise you can define them manually.

Scaling slave axis: Define here the scaling of the slave axis. See for the defaults in the picture
shown above.

Properties: If the option periodic is activated, it will be guaranteed that the function
values and the first and second derivatives of the start and end point of the
CAM are matching. Any modifications of the endpoint parameters, which
have been done during the editing of the curve will be ignored.

Close the dialog with OK to confirm the settings.

Hereupon in the CAM list on the left side of the window the name of the new CAM appears. As long
as this entry is marked, the CAM is displayed in the Editor and can be edited. In the right part of the
window the new CAM will be visualized. You see the horizontal blue master axes, the vertical blue
position axis (slave) in the upper window and the velocity- (dark-blue) and acceleration scale (green)
in the lower window. The following picture corresponds to the default settings in the 'CAM Properties'
dialog:

Chapter 4 - The CAM-Editor

SoftMotion in CoDeSys 2.3 4-3

For editing the above described settings the properties-dialog for the currently marked CAM can get
reopened anytime by a double-click on the entry in the CAM list or by using the command 'Settings',
which is available in the 'Extras' menu or the context menu.

CAM tree

In the left part of the editor window a tree is displayed, showing all CAMs and CAM switches
(tappets) . These elements always are sorted in a way, that all elements which have the same
master scaling, that means which potentially refer to the same axis, have the same "father".

4.4 Editing a CAM

In the left column of the editor select the CAM which you want to edit. For this purpose perform a
mouse-click on the entry, which hence will be displayed selected (shaded) and displayed in the editor
windows.

By simultaneously pressing the <Ctrl>-key and performing a mouse-click on one or several further
CAMs which have the same master (see chapter 4.3, CAM tree), those will be displayed additionally.

4.4.1 General Editor Settings

(For a description of the corresponding commands in the 'Extras' and 'Insert' menus see Chapter
4.4.3.)

The Edit mode can be selected in the Insert menu or by the corresponding button in the tool bar :

 Select elements

 Insert point

 Insert line

 Insert tappet

Editing a CAM

4-4 SoftMotion in CoDeSys 2.3

Editing the general properties of the CAM disc: In order to modify the settings which you have made
before (when creating the CAM) in the dialog 'CAM Properties', (see Chapter 4.3) use the command
Settings in the Extras menu.

Display of the CAM: For this the command "Show complete CAM" in the Extras menu.

Display mode of the lower part of the editor window: Choose one of the following types by the
corresponding command from the 'Extras' menu or by the button in the tool bar:

 Show velocity/acceleration: In the lower window the first (blue) and second (green)
 derivation of the CAM will be visualized.

 CAM as table: The lower window shows the CAM elements (points/lines) and their
 properties in an editable table.

 Tappets as table: The lower window shows the CAM switches (tappets) and their
 properties in an editable table.

4.4.2 Editing the properties of a particular CAM element

The attributes of a single path object can be modified in the 'CAM Element Properties' dialog or by
selecting and moving the element in the editor window:

1. In the 'CAM Element Properties' dialog:

Point, Line: By a double-click on the element in the CAM editor window the dialog 'CAM Element
Properties' can be opened to edit the following properties by numeric inputs:

Element type: "Line" resp. "Point"; if a line is "switched" to be a point, then it will automatically get
a certain length; if a point is "switched" to be a line, automatically the coordinates of the start point
of the line will be applied.

Master start, Master end: Start- and end values on the X-axis (Master) (unit see 'Extras'
'Settings')

Slave start, slave end: Start- and end values on the Y-axis (Slave) (unit see 'Extras' 'Settings')

Velocity: (only for Points)

Acceleration: (only for Points)

Tappet: By a double-click on the element in the CAM editor window the dialog Tappet properties gets
opened, where the following settings can be made:

Chapter 4 - The CAM-Editor

SoftMotion in CoDeSys 2.3 4-5

Activate with: The tappet gets activated, this means that the boolean variable (tappet bit), which is
assigned to the tappet-GroupID (see below), will be set to TRUE when the CAM is run through; one of
the following options can be set to define when exactly this should happen:

positive pass: if the CAM is passed through from the left to the right; after confirming with 'Apply' the
green arrow above the tappet symbol will point to the right

negative pass: if the CAM is passed through from the right to the left; after confirming with 'Apply' the
green arrow above the tappet symbol will point to the left

each pass: at each pass of the CAM; after confirming with 'Apply' the green arrow above the tappet
symbol will point to the right and to the left

Action: One of the following options can be set to define, which effect the activation of the tappet
should have on the action which is assigned in the project:

on: The action will be started (the tappet-bit will be set tot TRUE); The tappet symbol will
be filled green

off: The action will be stopped (the tappet-bit will be set tot TRUE); The tappet symbol will
be filled red

invert: If the action is currently active, it will be stopped; if it is currently inactive, it will be
started; (the tappet-bit gets inverted); The tappet symbol will be filled yellow

timed in: The action will be started with the values, which are given in the fields 'Delay' and
'Duration'; The tappet symbol will be filled cyan-colored

Group ID: Identification number (INT) of the tappet which serves to reference the tappet in the project;
several tappets can get the same GroupID and thus get "grouped" for the purpose that the assigned
action would serve the same digital switch.

Delay [µs]: Period of time, which should be waited before the action assigned to a tappet gets started
after the tapped was passed (after which the tappet-bit should be set tot TRUE). (only if action = timed
in)

Duration [µs]: Define here, how long the action, which is assigned to the tappet, should stay active
(how long the tappet-bit should stay TRUE). (only if action = timed in)

Master position: X-position of the tappet

Slave position: Y-position of the tappet, not editable, because determined by the curve progression

The settings in the properties dialogs can be confirmed by OK or Apply. The CAM curve in the editor
will be displayed correspondingly. OK will also close the dialog, whereas it will stay open with Apply.

(Editing the properties of particular CAM elements)

2. By selecting and moving in the editor window

An element can be selected by a mouse-click. To move an element, keep the mouse-key pressed
and move the cursor to the desired position. This will cause an modification of the corresponding
values in the properties dialog of the element:

Editing a CAM

4-6 SoftMotion in CoDeSys 2.3

Point: If you select a point in the CAM editor, a little red square will be displayed representing
the slope (Velocity). By moving this square (point on the square with the cursor, so that the
cursor symbol will be displayed as a cross, and then move the cursor) the velocity value for the
point can be modified. The slope will be displayed with the aid of an auxiliary tangent. Also the
point itself can be moved.

Line: If you select a line in the CAM editor, little red squares will be displayed at the end points.
You can change the slope (velocity) of the line by moving one of the end points (point on the
square with the cursor and move the cursor); you can move the line without changing the slope
by pointing on the line between the end points and moving the cursor.

Tappet: If you select a tappet in the CAM editor the frame of the tappet symbol (square) gets
red. The tappet can be moved along the CAM curve by moving the cursor.

4.4.3 Commands of the 'Extras' and 'Insert' Menus

'Extras' 'Settings'

This command opens the dialog 'CAM Element Properties', which you have edited during creating the
CAM. (See the picture in Chapter 4.3). Here you can modify the scaling and the units.

'Extras' 'Show complete CAM'

If this option is activated (a check is displayed before the command in the Insert menu, the button in
the tool bar appears "pressed"), additionally the '5-exponent polynomials', which are filling the
intervals between the CAM elements points, lines and/or tappets, will be displayed. Otherwise just the
elements are visible.

Show bounds

If this option is activated (a check is displayed before the command in the Insert menu, the button in
the tool bar appears "pressed"), besides the CAM and their derivatives also its bound values are
displayed (Maximum/Minimum).

Compile options

This command opens a dialog where the compilation of the CAM can be configured.

Chapter 4 - The CAM-Editor

SoftMotion in CoDeSys 2.3 4-7

Basically there are three modes of compilation:

1. polynomial: During compilation structure variables of type MC_CAM_REF are created. They
contain for each segment the description of the 5 exponent polynom which describes the CAM.
Structures of this type are used as input of the MC_CamIn module. The structure is part of the
library SM_DriveBasic.lib.

2. equidistant point table: According to the settings in the lower part of the dialog a table of base
points is created. The table is of type SMC_CAMTable_<datatype>_<number of elements>_1. The
position-array of the dialog contains the slave-values of the CAM referring to the master-values,
which are arranged evenly on the defined range of the master axis. The first value of the table
refers to the slave position at the master minimum of the CAM. The last value at non-periodic
CAMS refers to the slave position at the master maximum. At periodic CAMs this value needs not
to be re-written, because it is the same as that at the master minimum; for this reason the intervals
are made slightly narrower and the last value of the table describes the slave position at Master.
End - (Master.End-Master.Start)/Number of elements.

3. element optimized point table:According to the setting in the lower part of the dialog a two-
dimensional (typically not equidistant) base point table of type
SMC_CAMTable_<Datatype>_<Element number>_2 is created. The table which is contained,
describes pairs of master- and attached slave-positions. The partition is done in a way, that
elements with constant velocity (lines) each only get one base point at start and end. The
remaining base points are arranged as evenly as possible on the residual CAM.

4. don't compile: No global variables are created for the CAM. This option mainly is used if the CAM
should be loaded from the file system at run time (see 10.3, CAM function blocks), e.g. because it
must be changed without making necessary a change of the running CoDeSys project.

The Master- and Slave scaling only is of interest for the base point tables. You can define the scaling
of the master and the slave axis either via start and end value, or via start value and unit.

'Extras' 'Write CAM to file’

This command opens a file selection dialog, where a *.CAM file can be defined, to which the currently
edited CAM can be written. This file can be read at run time by the function block SMC_ReadCAM
(see 10.3, CAM function blocks) and can be converted to a standard data structure Depending on the
currently set compile option the CAM will be stored in polynomial, equidistant or element optimized
format.

'Extras' 'Read CAM from file’

This command can be used to import a CAM description to the CoDeSys CAM editor by reading it
from a *.CAM file. After the desired file has been selected, the dialog 'CAM properties’ will be opened,
where a name for the CAM must be defined and the scaling of the slave axis must be adapted. Due to
the fact that during the creation of a CAM only that information is output which is needed for the
execution of the CAM, a read CAM can be different from the original.

'Extras' 'Export CAM as ASCII-
Table’

This command can be used to export the current CAM in an ASCII text file. The number of points can
be specified. The start and end point always will be contained as first resp. last point. A text file with
the following structure will be created:

<Master-Position>;<Slave-Position><CR><LF>

The resulting text file for example can be imported in other programs and can be used for the layout of
drive line.

'Extras' 'Import CAM from ASCII
table’

Use this command to import CAM tables which are available as ASCII files in the following format:

CAM data structures

4-8 SoftMotion in CoDeSys 2.3

<Master-Position>;<Slave-Position>

Regard that the points are arranged in ascending order relative to the master-position.

After the CAM has been imported successfully, the user in the properties dialog can define the name,
the interval and the scaling. Subsequently the number of points can be reduced.

'Insert' 'Select elements'

 Use this command to switch on and off the select mode. As long as the select mode is activated
(a check is displayed before the command in the Insert menu, the button in the tool bar appears
"pressed"), you can select an CAM element by positioning the cursor on the desired element (point,
line, tappet) and pressing the left mouse-button. Hereupon the corresponding position marks (little red
squares) will be displayed and the element can be edited.

'Insert' 'Insert point'

 Select this command in the 'Insert' menu or press the button in the tool bar to insert a new point
in the CAM. A point-symbol will be added to the cursor. Position the cursor where you want to set the
new point and press the left mouse-button. The point symbol (red filled circle with a hair cross) will be
displayed on the curve and additionally a horizontal tangent, representing the slope, will be shown. If
you loose the mouse-button, the point will be inserted and automatically it will be switched to the
select mode ("Select elements ".

If you keep the left mouse-button pressed during inserting the new point you can immediately modify
the slope of the tangent (Velocity) by moving the mouse.

'Insert' 'Insert line'

 Select this command in the 'Insert' menu or press the button in the tool bar to insert a line in the
CAM. A line-symbol will be added to the cursor. Position the cursor where you want to start the line
(left end point) and keep the mouse-button pressed. Move the cursor to the desired endpoint which
must be to the right of the start point and to the left of the next defined point, line or tappet. As soon as
you loose the left mouse-button the end point will be applied and automatically it will be switched to
the select mode ("Select elements ".

'Insert' 'Insert tappet'

 Select this command in 'Insert' menu or press the button in the tool bar to insert a tappet in the
CAM. A tappet-symbol will be added to the cursor. Position the cursor on the desired position for the
new tappet. You do not have to care for the Y-Position, for the tappet will be displayed appropriately to
the chosen X-value on the CAM curve. As long as you keep the left mouse-button pressed, you can
move the tappet along the curve. As soon as you loose the button, the tappet will be inserted and
automatically it will be switched to the select mode.

4.5 CAM data structures

During compilation of the project a global variables list, named CAM Data, will be created from the
CAM data produced in the CAM-Editor. The description of each single CAM will be written to a
structure of type MC_CAM_REF corresponding to the settings in dialog 'Compile options' and by that
made accessible for the IEC-program resp. the CAM preprocessing functions and function blocks. In
order to get an error-free compilation the appropriate structure definitions must be available in the IEC
program.

(Hint: Have a look at the programming examples in chapter 11)

During compilation a data structure _SMC_CAM_LIST (ARRAY OF POINTER TO MC_CAM_REF) is
created, which refers to the particular CAMS via pointers. Further on during compilation a data
structure is created pointing on all available CAMs.

Chapter 4 - The CAM-Editor

SoftMotion in CoDeSys 2.3 4-9

Of course the corresponding data structures also can be created resp. filled from the IEC program
during run time. For this reason they will be described more detailed in the following. Not mentioned
variables of the structure are used only internally.

MC_CAM_REF

This data structure represents a generic CAM and contains the following elements:

wCAMStructID: WORD

This variable, which always has a fix value, is used to check whether the data structure, given to the
module as an input, is a MC_CAM_REF structure.

xStart, xEnd: LREAL

Domain of the CAM. Start- and end position of the master.

byType:BYTE
This variable describes the CAM type, i.e. the way in which the CAM is represented.

1: equidistant, 1-dimensional table of slave positions

2: non-equidistant, 2-dimensional table of master/slave-point pairs

3: polynomial description on particular points consisting of masterposition, slave-position, -velocitiy
and -acceleration (XYVA).

byVarType:BYTE (nur für byType=1 oder byType=2)
Variable type, the curve table consists of:

0: INT

1: UINT

2: DINT

3: UDINT

4: REAL

5: LREAL

nElements:INT
Number of elements, so depending on type number of slave positions, master/slave positions or
XYVA points.

byInterpolationQuality:BYTE (nur für byType=1 oder byType=2)
Fine interpolation degree: 1: linear (default), 3: cubic

pce: POINTER TO BYTE
Pointer on the actual data element; depending on type:

Type

1 (equidistant) SMC_CAMTable_<VarType>_<nElements>_1

2 (non-equidistant) SMC_CAMTable_<VarType>_<nElements>_2

3 (XYVA) ARRAY OF SMC_CAMXYVA

nTappets: INT
Number of switch actions.

pt: POINTER TO SMC_CAMTappet
Pointer on an ARRAY OF SMC_CAMTappet.

strCAMName:STRING
Name of the CAM.

CAM data structures

4-10 SoftMotion in CoDeSys 2.3

SMC_CAMXYVA

A XYVA-CAM consists of an array of SMC_CAMXYVA. Each variable of that array describes a point
of the CAM via dX (master position), dY (slave position), dV (first derivative dY/dX; corresponds to the
slave velocity at a constant master velocitiy 1) and dA (second derivative d²Y/dX²; corresponds the
slave-acceleration at a constant master velocity 1). Start- and end point of the CAM must be
contained at least.

SMC_CAMTable_<variables-
type>_<number of elements>_1

In this data structure an equidistant curve table is described. The particular slave positions are stored
in Table: ARRAY[0..<Anzahl Elemente>-1] OF <Variablen-Typ. The start and end points of the
CAM must be contained at least.

The variables fEditorMasterMin, fEditorMasterMax, fTableMasterMin, fTableMasterMax descirbe
an additional scaling of the tables by storing the range of definitions/values in SoftMotion units
(fEditorMaster, fEditorSlave) and scaled on table units (fTableMaster, fTableSlave).

SMC_CAMTable_<variable-
type>_<number of elements>_2

A non-equidistant curve table is stored in Table: ARRAY[0..<number of elements>-1] OF
ARRAY[0..1] OF <variables-type>. Contrary to the equidistant form the first element is the master
position, the second one the slave position.

4.5.1 Example for a manually created CAM

This example shows how a CAM is created in the IEC program, i.e. without using the editor:

declaration part:
CAM: MC_CAM_REF:=(
 byType:=2, (* non-equidistant)
 byVarType:=2, (* UINT *)
 nElements:=128,
 xStart:=0,
 xEnd:=360);

Table: SMC_CAMTable_UINT_128_1:=(
 fEditorMasterMin := 0, fEditorMasterMax := 360,
 fTableMasterMin := 0, fTableMasterMax := 65536,
 fEditorSlaveMin := 0, fEditorSlaveMax := 360,
 fTableSlaveMin := 0, fTableSlaveMax := 65536);

program part:
(* Create CAM (a line for example); unique *)
FOR i:=0 TO 127 DO
 Table.Table[i][0]:=Table.Table[i][1]:=REAL_TO_UINT(i / 127.0 * 65536);
END_FOR

(* connect pointers; must be done in each cycle !!! *)
CAM.pce := ADR(Table);

The CAM created in this way now can be used as input for module MC_CamTableSelect and the
output of this module in turn can be used for MC_CamIn.

Chapter 5 - The Library SM_PLCopen.lib

SoftMotion in CoDeSys 2.3 5-1

5 The Library SM_PLCopen.lib

5.1 Overview

The modules provided by the library "SM_PLCopen.lib" follow the PLCopen specification: "Function
blocks for motion control, Version 1.0".

This description is based on this specification and treats the functionalities which are not covered
by the PLCopen.

The function blocks which are completely programmed according to the IEC1131-3 standard, can be
classified in three categories:

1. Modules for the general operating, control and parameterizing of single drives. See a
description in chapter 5.3.

2. Modules for the independent motion control of single drives. These modules help to
move single axes autonomously in different ways.

3. Modules for the motion control or a drive (slave) against a further drive (master). These
modules enable realizing CAMs, electronic gears and phase shifts. See a description in
chapter 5.4.

Additional modules: see chapter 5.5.

Besides that for all important modules the library provides visualization templates, which are
linked to an instance of the corresponding module and visualize its in- and outputs. These
visualizations may be very useful during the programming and testing of an application.

Preconditions:

This library is basing on the library "Drive_Basic.lib ". This library provides the structure AXIS_REF,
which is accessed by the library modules.

5.2 PLCopen-Specification "Function blocks for motion control, Version 1.0"

It is recommended to read - besides the on hand description - also the PLCopen-Specification
"Function blocks for motion control, Version 1.0" . The main items are summarized in short in the
following:

Modules get activated in two ways:

a) Enable-Input: If the module has an enable-input (like e.g. MC_ReadParameter), it will be active
exactly as long as Enable is TRUE)

b) Execute-Input: The module gets activated by a rising edge (Transition from FALSE to TRUE) of
the Execute-Input and not will get active again until it has been terminated its movement, or another
module has taken control on the axis (AXIS_REF), or it has got a new rising edge at the Execute-
Input thus re-starting the movement. Please also regard that all input variables only will be read in
case of a rising edge.

By the Done-Output or another logical output the modules indicate either the validity of the outputs
(e.g.MC_ReadStatus) or the termination of the movement (e.g. MC_MoveAbsolute).

A movement-creating module which gets interrupted by an other one, will indicate this by setting its
CommandAborted-output.

The outputs of the Execute-started modules - after having set their Done-Output - remain unchanged
as long as the Execute-Input is set. By a falling edge they get deleted. If a falling edge has been
detected before termination, the outputs will be set for one cycle and in the succeeding cycle will be
deleted.

Modules for Controlling Single-Axis Motions

5-2 SoftMotion in CoDeSys 2.3

All motion generating modules require that in the corresponding axis the controller enable is done and
the brake is released. Otherwise an error will be reported.

5.3 Modules for Controlling Single-Axis Motions

MC_ReadStatus

This function block, which is part of the SM_PLCopen.lib, provides some particular states of an axis.

MC_ReadAxisError

This function block, which is part of the SM_PLCopen.lib, provides information on general errors which
have occurred at the drive.

MC_Reset

This function block, which is part of the SM_PLCopen.lib, reset the axis-state (SMC_AXIS_STATE)
from "error_stop" to "standstill".

Chapter 5 - The Library SM_PLCopen.lib

SoftMotion in CoDeSys 2.3 5-3

MC_ReadParameter,
MC_ReadBoolParameter

These function blocks, which are part of the SM_PLCopen.lib, can be used to read some standard
parameters of the drive structure. Their numbers partially are specified by PLCopen, partially they are
defined by the 3S – Smart Software Solutions GmbH Drive Interface.

These modules also can be used to read manufacturer-specific data from the drive:. This modules
also can be used to read manufacturer specific data from the drive. A document belonging to the
particular drive library (XXXDrive.lib) will describe the coding of the drive specific parameter numbers.

MC_WriteParameter,
MC_WriteBoolParameter

These function blocks, which are part of the SM_PLCopen.lib, can be used to set some standard
parameters of the drive structure. Their numbers partially are specified by PLCopen, partially they are
defined by the 3S – Smart Software Solutions GmbH Drive Interface.

These modules also can be used to send manufacturer-specific data to the drive: In this case they
must get passed the negative (!) drive-specific parameter number. A document belonging to the
particular drive library (XXXDrive.lib) will describe the coding of the drive specific parameter numbers.

Modules for Controlling Single-Axis Motions

5-4 SoftMotion in CoDeSys 2.3

MC_ReadActualPosition

This function block, which is part of the SM_PLCopen.lib, provides the current position of the drive.

MC_ReadActualVelocity

This function block, which is part of the SM_PLCopen.lib, provides the current velocity of the drive.

MC_ReadActualTorque

This function block, which is part of the SM_PLCopen.lib provides the current torque resp. the current
power of the drive.

MC_Power

This function block, which is part of the SM_PLCopen.lib, controls the ON-/OFF-switch (power) and
the status of the brakes of the drive. If a drive has not been switched ON in this way, if the controller
has not been unblocked or if the brake has not been released, no motion control is possible.

Inputs of the function block:

Enable : BOOL (Default: FALSE)
As long as this variable is TRUE, the drive is switched on.

bRegulatorOn : BOOL (Default: FALSE)

Switches on/off the regulation.

bDriveStart : BOOL (Default: FALSE)

Applies resp. releases the brake in the drive.

Chapter 5 - The Library SM_PLCopen.lib

SoftMotion in CoDeSys 2.3 5-5

In-/Output (VAR_IN_OUT) of the function block:

Axis : AXIS_REF
Here the structure is passed, which has been filled in the Drive Interface (Drive_Basic.lib) with the axis
data.
Outputs of the function block:

Status : BOOL (Default: FALSE)

Indicates whether the drive currently is in (TRUE) or out (FALSE) of regulation.

Error : BOOL (Default: FALSE)

TRUE indicates an error in the function block.

ErrorID : INT;
Error number

MC_Home

This function block, which is part of the SM_PLCopen.lib, starts a manufacturer-specific (!) reference
move in the drive. This motion is solely initiated by the Drive Interface. As soon as the drive signals
that it has been finished, the output 'Done' will be set to TRUE.

Inputs of the function block:

Execute : BOOL (Default: FALSE)

At a rising edge at this variable the motion of the drive will be started.

Position : REAL
Absolute position of the drive when the reference signal is detected

Outputs of the function block:

Done : BOOL (Default: FALSE)

If TRUE, the reference move has been terminated and the drive is in standstill state.

CommandAborted : BOOL (Default: FALSE).

This variable gets TRUE if the command gets aborted by another.

Error : BOOL (Default: FALSE)

This variable gets TRUE when an error has occurred in the function block.

ErrorID : INT
Error number

MC_Stop

This function block, which is part of the SM_PLCopen.lib decelerates the axis to velocity 0. No
interrupt is possible and the axis will be blocked as long as the input "Execute" is TRUE and the axis
not yet has been stopped completely.

Modules for Controlling Single-Axis Motions

5-6 SoftMotion in CoDeSys 2.3

In-/Output (VAR_IN_OUT) of the function block:

Axis : AXIS_REF
This variable passes the structure, which has been feded with the axis data by the Drive Interface
(Drive_Basic.lib).
Inputs of the function block:

Execute : BOOL (Default: FALSE)

At a rising edge at this variable the module will get active, this means will start the deceleration.

Deceleration : REAL

Value of the deceleration (decreasing energy of the motor) [u/s²]

Outputs of the function block:

Done : BOOL (Default: FALSE)
This variable gets TRUE as soon as the commanded position has been reached, this means as soon
as the drive has been stopped.

Error : BOOL (Default: FALSE)

This variable gets TRUE when an error has occurred in the function block.

ErrorID : INT

Error number

MC_MoveAbsolute

This function block, which is part of the SM_PLCopen.lib, moves the axis to an absolute position
according to the defined velocity, deceleration and acceleration values. In case of linear axes the
direction value is not regarded, in case of rotating axes it determines the direction of rotation.

In-/Output (VAR_IN_OUT) of the function block:

Axis : AXIS_REF
This variable passes the structure, which has been feded with the axis data by the Drive Interface
(Drive_Basic.lib).
Inputs of the function block:

Execute : BOOL (Default: FALSE)
At a rising edge at this variable the module will start the motion.

Chapter 5 - The Library SM_PLCopen.lib

SoftMotion in CoDeSys 2.3 5-7

Position : REAL
Target position for the motion (technical unit [u])

Velocity : REAL
Value of the target velocity (not necessarily to be reached) [u/s] *)

Acceleration : REAL
Desired acceleration (increasing energy of the motor) [u/s^2]

Deceleration : REAL
Desired deceleration (decreasing energy of the motor) [u/s^2]

nDirection : MC_Direction (Default: shortest)

This enumeration provides the desired direction; only relevant for rotating axes (modulo-axis); see
Drive_Basic.lib. Permissible values: current (current direction), positive, negative, shortest (seen from
the current position), fastest (direction, which would finish movement as fast as possible) .

Outputs of the function block:

Done : BOOL (Default: FALSE)
This variable gets TRUE as soon as the commanded position has been reached, this means as soon
as the drive has been stopped.

CommandAborted : BOOL (Default: FALSE)

This variable gets TRUE as soon as the commanded motion was interrupted by any motion function
block acting on the same axis; except MoveSuperImposed

Error : BOOL (Default: FALSE)

This variable gets TRUE when an error has occurred in the function block.

ErrorID : INT

Error number

MC_MoveAdditive

This function block, which is part of the SM_PLCopen.lib, has two different modes of action,
depending on the current state of the axis:

1. discrete_motion:
The Distance value will be added to the target position of the module which is currently processing
on the axis. The motion will aim at the new target position then.

2. continuous_motion or standstill:
The Distance will be covered referring to the current position, regarding the given parameters.

In-/Output (VAR_IN_OUT) of the function block:

Axis : AXIS_REF
This variable passes the structure, which has been feded with the axis data by the Drive Interface
(Drive_Basic.lib).

Modules for Controlling Single-Axis Motions

5-8 SoftMotion in CoDeSys 2.3

Inputs of the function block:

Execute : BOOL (Default: FALSE)
At a rising edge at this variable the module will start the motion.

Distance : REAL
Relative distance for the motion (in technical unit [u]).

Velocity : REAL
Value of the target velocity (not necessarily to be reached) [u/s].

Acceleration : REAL
Desired acceleration (increasing energy of the motor) [u/s^2].

Deceleration : REAL
Desired deceleration (decreasing energy of the motor) [u/s^2].

Outputs of the function block:

Done : BOOL (Default: FALSE)
This variable gets TRUE as soon as the commanded position has been reached, this means as soon
as the drive has been stopped.

CommandAborted : BOOL (Default: FALSE)

This variable gets TRUE as soon as the commanded motion was interrupted by any motion function
block acting on the same axis; except MoveSuperImposed.

Error : BOOL (Default: FALSE)

This variable gets TRUE when an error has occurred in the function block.

ErrorID : INT

Error number

MC_MoveRelative

This function block, which is part of the SM_PLCopen.lib, moves the axis by a relative distance
according to the defined velocity, deceleration and acceleration values. The distance can have
positive or negative values.

In-/Output (VAR_IN_OUT) of the function block:

Axis : AXIS_REF
This variable passes the structure, which has been feded with the axis data by the Drive Interface
(Drive_Basic.lib).

Inputs of the function block:

Execute : BOOL (Default: FALSE)
At a rising edge at this variable the module will start the motion.

Chapter 5 - The Library SM_PLCopen.lib

SoftMotion in CoDeSys 2.3 5-9

Distance : REAL
Relative distance for the motion (in technical unit [u]).

Velocity : REAL
Value of the target velocity (not necessarily to be reached) [u/s].

Acceleration : REAL
Desired acceleration (increasing energy of the motor) [u/s^2].

Deceleration : REAL
Desired deceleration (decreasing energy of the motor) [u/s^2].

Outputs of the function block:

Done : BOOL (Default: FALSE)
This variable gets TRUE as soon as the commanded position has been reached.

CommandAborted : BOOL (Default: FALSE)

This variable gets TRUE as soon as the commanded motion was interrupted by any motion function
block acting on the same axis; except MoveSuperImposed

Error : BOOL (Default: FALSE)

This variable gets TRUE when an error has occurred in the function block.

ErrorID : INT

Error number

MC_MoveSuperImposed

This function block, which is part of the SM_PLCopen.lib causes, where appropriate, additionally to
the currently active motion another one, which makes the axis passing a defined distance. The given
values for velocity, acceleration and deceleration must be regarded as relative values, this means that
they are independent of the underlying motion. The originally active module will not be interrupted by
MC_MoveSuperImposed. If the originally active module gets interrupted by another module while
MC_MoveSuperImposed still is active, MC_MoveSuperImposed nevertheless will continue the started
motion, additionally to activity of the new module.

The basically active module will not be interrupted by MC_MoveSuperImposed. If the basically active
module gets interrupted by another one, while MC_MoveSuperImposed is active, then the movement
of MC_MoveSuperImposed will be aborted.

Please regard, that MC_MoveSuperImposed may not be called before the module which creates the underlying
motion !

In-/Output (VAR_IN_OUT) of the function block:

Axis : AXIS_REF
This variable passes the structure, which has been feded with the axis data by the Drive Interface
(Drive_Basic.lib).

Modules for Controlling Single-Axis Motions

5-10 SoftMotion in CoDeSys 2.3

Inputs of the function block:

Execute : BOOL (Default: FALSE)
At a rising edge at this variable the module will start the motion.

Distance : REAL
Relative distance for the motion (in technical unit [u]).

VelocityDiff : REAL
Value of the maximum velocity difference to the ongoing motion (not necessarily reached) [u/s].

Acceleration : REAL
Desired acceleration (increasing energy of the motor) [u/s^2].

Deceleration : REAL
Desired deceleration (decreasing energy of the motor) [u/s^2].

Outputs of the function blocke:

Done : BOOL (Default: FALSE)
This variable gets TRUE as soon as the commanded position has been reached.

Busy : BOOL (Default: FALSE)
This variable is TRUE as long as the superimposed motion currently is being processed.

CommandAborted : BOOL (Default: FALSE)

This variable gets TRUE as soon as the commanded motion was interrupted by any motion function
block acting on the same axis.

Error : BOOL (Default: FALSE)

This variable gets TRUE when an error has occurred in the function block.

ErrorID : INT
Error number

MC_MoveVelocity

This function block, which is part of the SM_PLCopen.lib causes a non-stop motion of the axis with a
predefined velocity (AXIS_REF). In order to reach this velocity, MC_MoveVelocity uses the
programmed acceleration and deceleration values. The target velocity always is positive. The input
variable nDirection defines the direction.

In-/Output (VAR_IN_OUT) of the function block:

Axis : AXIS_REF
This variable passes the structure, which has been fed with the axis data by the Drive Interface
(Drive_Basic.lib).

Inputs of the function block:

Execute : BOOL (Default: FALSE)
At a rising edge at this variable the module will start the motion.

Chapter 5 - The Library SM_PLCopen.lib

SoftMotion in CoDeSys 2.3 5-11

Velocity : REAL
Value of the maximum velocity difference to the ongoing motion (not necessarily reached) [u/s].

Acceleration : REAL
Desired acceleration (increasing energy of the motor) [u/s^2].

Deceleration : REAL
Desired deceleration (decreasing energy of the motor) [u/s^2].

Direction : MC_Direction (Default: shortest)

This enumeration provides the desired direction; only relevant for rotating axes (modulo-axis); see
Drive_Basic.lib. Permissible values: current, positive, negative.

Outputs of the function block:

InVelocity : BOOL (Default: FALSE)
This variable gets TRUE as soon as the set velocity has been reached.

CommandAborted : BOOL (Default: FALSE)

This variable gets TRUE as soon as the commanded motion was interrupted by any motion function
block acting on the same axis; except MoveSuperImposed.

Error : BOOL (Default: FALSE)

This variable gets TRUE when an error has occurred in the function block.

ErrorID : INT

Error number

MC_PositionProfile

This function block, which is part of the SM_PLCopen.lib, follows a defined position profile. For this
purpose a variable of type structure MC_TP_REF must be defined and filled.

MC_TP_REF contains the following variables:

Variable Type Init value Description

Number_of_pairs INT 0 Number of profile position points

IsAbsolute BOOL TRUE Positions absolute or relative

MC_TP_Array ARRAY[1..100] OF MC_TP Position points

MC_TP contains the following variables:

Variable Type Init value Description

delta_time TIME t#0s Period of time between reaching the last
and the current position point

position REAL 0 (Absolute-/relative-) position of the
profile position point

The module creates a path through the given position points, which is a double continuously
differentiable curve composed of cubic polynomials.

Regard, that the axis normally will reach the end of the predefined profile with a velocity and
acceleration unequal 0. This can be compensated by the call of a MC_MoveAbsolute or a SMC_Stop
module subsequently to the module MC_PositionProfile, after this has terminated its work.

Modules for Controlling Single-Axis Motions

5-12 SoftMotion in CoDeSys 2.3

In-/Output (VAR_IN_OUT) of the function block:

Axis : AXIS_REF
Here the structure is passed, which has been filled in the Drive Interface (Drive_Basic.lib) with the axis
data.

Inputs of the function block:

Execute : BOOL (Default: FALSE)
At a rising edge at this variable the module will start the motion.

ArraySize : INT
Dimension of array for position points (max. 1..100).

Scale : REAL (Default: 1)
General scaling factor of the profile.

Offset : REAL
General offset of profile [u].

TimePosition : MC_TP_REF
Information on time and position values, see above.

Outputs of the function block:

Done : BOOL (Default: FALSE)
This variable gets TRUE as soon as the commanded position has been reached.

CommandAborted : BOOL (Default: FALSE)

This variable gets TRUE as soon as the commanded motion was interrupted by any motion function
block acting on the same axis; except MoveSuperImposed.

Error : BOOL (Default: FALSE)

This variable gets TRUE when an error has occurred in the function block.

ErrorID : INT
Error number

MC_VelocityProfile

This function block, which is part of the SM_PLCopen.lib, is an analog to the module
MC_PositionProfile. But here in the input variable of type structure MC_TV_REF the position points
are defined by their velocities.

MC_TV_REF contains the following variables:

Variable Typ Init value Description

Number_of_pairs INT 0 Number of profile position points

IsAbsolute BOOL TRUE Positions absolute or relative

MC_TV_REF ARRAY[1..100] OF
MC_TV

 Position points

Chapter 5 - The Library SM_PLCopen.lib

SoftMotion in CoDeSys 2.3 5-13

SMC_TV_REF contains the following variables:

Variable Type Init value Description

delta_time TIME t#0s Period of time between reaching the last and
the current position point

velocity REAL 0 (Absolute-/relative-)velocity of the position
point

The module creates a path through the given position points, which is a continuously differentiable
curve consisting of parables.

The position of the axis results from the start position and the integrated velocity.

MC_AccelerationProfile

This function block, which is part of the SM_PLCopen.lib, is an analog to the MC_PositionProfile
module. But here in the input variable of type structure MC_TA_REF the position points are defined by
their acceleration values.

MC_TA_REF contains the following variables:

Variable Type Init value Description

Number_of_pairs INT 0 Number of profile position points

IsAbsolute BOOL TRUE Positions absolute or relative

MC_TA_Array ARRAY[1..100] OF
MC_TA

 Position points

MC_TA contains the following variables:

Variable Type Init value Description

delta_time TIME t#0s Period of time between reaching the last and
the current position point

acceleration REAL 0 (Absolute-/relative-)velocity of the position
point

The module creates a path through the given position points, which is a continuous curve consisting of
lines.

The velocity of the curve results from the velocity at the start of the profile and the and the integrated
acceleration. The position of the axis results from the start position and the integrated velocity.

Modules for Controlling Single-Axis Motions

5-14 SoftMotion in CoDeSys 2.3

MC_SetPosition

This module shifts the zero point of the axis, so that:

• in absolute mode (Mode = FALSE; Default) the value which is set by input Position will become the
actual set position, resp.

• in relative mode (Mode = TRUE) the actual set position will be shifted by the size of Position.

Basically the module can be called at any time. But regard that at a path-controlled motion, if the
target positions are given to the module directly, e.g. via SMC_ControlAxisByPos, a jump of the target
position break can result.

MC_TouchProbe

This function block, which is part of the SM_PLCopen.lib can be used to detect very precisely the
position of the drive via a fast input. Because this as a rule must work faster than in the normal PLC,
in many cases either the drive is impinged with this function or it is executed - independently from the
PLC cycles - via interrupts or the like.

Input TriggerInput is of type TRIGGER_REF and describes the trigger input in detail:

Variable Type Initial value Description

bFastLatching BOOL TRUE quick latching via DriveInterface (TRUE) or latching
according to PLC cycle (FALSE)

iTriggerNumber INT -1 only for bFastLatching = TRUE: Trigger number; depending
on DriveInterface

bInput BOOL FALSE only for bFastLatching = TRUE::Input signal; TRUE causes
latching.

bActive BOOL FALSE internal variable

The window function, activated and defined via WindowOnly, FirstPosition, LastPosition, is dependent
on being supported by the DriveInterface and will return an error if this is not the case.

The module is independent from the axis state and is active until a position will be latched resp. the
process will be aborted by MC_AbortTrigger.

Chapter 5 - The Library SM_PLCopen.lib

SoftMotion in CoDeSys 2.3 5-15

MC_AbortTrigger

This function block, which is part of the SM_PLCopen.lib aborts a latching which is currently done on
the trigger input.

5.4 Modules for Synchronized Motion Control

MC_CamTableSelect

Using this module, which is provided by the library SM_PLCopen.lib, you can select a CAM, determine
the master and the slave axes for this CAM and do some pre-settings. The object CamTableID which
is available as an output, later will be passed on to the CAM module MC_CamIn.

The master axis can be virtual, this means that it must not exist physically. If the variable
bRegulatorOn is TRUE, the target values of the master axis will be used, otherwise the actual values.

The CAM defining the motion either can be programmed manually in an structure object of type
MC_CAM_REF or it can be created in the CAM editor which is integrated in the CoDeSys
programming system. (see document "SoftMotion CAM-Editor").

If the variable Periodic is TRUE, after a complete pass the processing of the CAM will be restarted,
otherwise just one run will be done.

The variables MasterAbsolute und SlaveAbsolute define, whether the CAM-mapping of the master
axis to the slave axis should refer to absolute values (TRUE) or to increments (FALSE).

In-/Outputs (VAR_IN_OUT) of the module:

Master : AXIS_REF
Master axis

Slave : AXIS_REF
Slave axis

CamTable : MC_CAM_REF
Description of the CAM

Inputs of the module:

Execute : BOOL (Default: FALSE)
At a rising edge the module chooses a new CAM.

Modules for Synchronized Motion Control

5-16 SoftMotion in CoDeSys 2.3

Periodic : BOOL (Default: TRUE)
periodic/ non-periodic CAM.

MasterAbsolute : BOOL (Default: TRUE)
CAM refers to absolute/ relative (referring to position at rising edge in Execute of CAMIn) master
position.

SlaveAbsolute : BOOL (Default: TRUE)
CAM refers to absolute/ relative (referring to position at rising edge in Execute of CAMIn) slave
position.

Outputs of the module:

Done : BOOL (Default: FALSE)
TRUE indicates that the desired distance has been covered

Error : BOOL (Default: FALSE)
TRUE indicates that an error has occurred in the function block

ErrorID : SMC_Error (INT)
Error number

CAMTableID : MC_CAM_ID
Output describing the CAM. Serves as an input for the homonymous input in MC_CamIn.

MC_CamIn

Using this module, which is provided by the library SM_PLCopen.lib, you can realize a CAM which
has been selected by MC_CAMTABLESELECT.

In addition to the offsets and scaling also the start mode can be defined. Regard that the modes
ramp_in, ramp_in_pos and ramp_in_neg, which would effect a continuous approximation of the slave
target value to the CAM target value, in case at start time the actual slave value would differ from the
CAM target value, is not yet implemented.

This module provides an additional function. It detects tappets and via the output Tappets can hand
over the tappet info to one or several SMC_GetTappetValue function blocks (see
SMC_GetTappetValue). Regard that the CamIn Module cannot register more than three tappets per
cycle. The module SMC_CAMRegister works without this limitation.

In-/Outputs (VAR_IN_OUT) of the module:

Master : AXIS_REF
Master axis

Chapter 5 - The Library SM_PLCopen.lib

SoftMotion in CoDeSys 2.3 5-17

Slave : AXIS_REF
Slave axis

Inputs of the module:

Execute : BOOL (Default: FALSE)
At a rising edge the module starts the movement

MasterOffset : LREAL (Default: 0)
additional offset on master position

SlaveOffset : LREAL (Default: 0)
additional offset on slave position

StartMode : MC_StartMode (absolute/relative/ramp_in/ramp_in_pos/ramp_in_neg) (Default:
absolute)
CAM either is started relative (relative) to the current position or absolutely (absolute) to this, or with
slow ramping in (ramp_in), in positive (ramp_in_pos) or negative (ramp_in_neg) direction.

CamTableID : MC_CAM_ID
Output of MC_CamTableSelect

Velocity, Acceleration, Deceleration: LREAL (Default: 0)
additonal velocity, acceleration, deceleration for ramp_in mode

TappetHysteresis: LREAL (Default: 0)
Width of the hysteresis band around the tappets

Outputs of the module:

InSync : BOOL (Default: FALSE)
TRUE indicates that the movement is on the CAM

CommandAborted : BOOL (Default: FALSE)
The started movement has been aborted by another function block, which effects the same axis;
Exception: MoveSuperImposed

Error : BOOL (Default: FALSE)
TRUE indicates an error in the function block

ErrorID : SMC_Error (INT)
Error number

EndOfProfile : BOOL
Indicates the end of a CAM. At periodic CAMS this output will be pulsed

Tappets : SMC_TappetData
Tappet output. The particular tappet positions finally will be evaluated by the SMC_GetTappetValue
module.

MC_CamOut

Using this module, which is provided by the library SM_PLCopen.lib, you can disengage the slave
drive from the master. The slave will be driven on with the current velocity.

Modules for Synchronized Motion Control

5-18 SoftMotion in CoDeSys 2.3

MC_GearIn

Using this module, which is provided by the library SM_PLCopen.lib, you can couple the slave axis to
the master axis. Thereby the slave velocity is f-times the velocity of the master axis. The value of
factor f results from the quotient of the input parameters RatioNumerator und RatioDenominator.

The module accelerates resp. decelerates the slave axis as long as its velocity will have the desired
ratio, whereby the values of Acceleration and Deceleration will be regarded. As soon as this has been
reached, the slave axis velocity derives from the master axis.

If the variable bRegulatorOn (structure AXIS_REF, Drive_Basic.lib) of the master axis is TRUE, the
set values of the velocity will be used, otherwise the actual values.

MC_GearOut

Using this module, which is provided by the library SM_PLCopen.lib, you can disengage the slave
drive from the master. The slave will be driven on with the current velocity.

MC_Phasing

Using this module, which is provided by the library SM_PLCopen.lib, you can effect a constant
distance between master axis and slave axis. In this case master and slave of course have identically
velocity and acceleration. For this purpose the slave axis by acceleration or deceleration gets the
same velocity as the master axis. When this state has been reached, on the master axis an additional
movement will be executed (similarly to MC_MoveSuperImposed), which will effect the desired phase
shift.

The MC_Phasing module will stay active until it will be interrupted by another Stein.

Chapter 5 - The Library SM_PLCopen.lib

SoftMotion in CoDeSys 2.3 5-19

5.5 Additional Elements of the SM_PLCopen.lib

SMC_GetCamSlaveSetPosition

This module calculates the current target position of an axis (slave) for the case that the axis would be
coupled via a CAM to the motion of another axis (Master). Thereby both axes are not moved or
affected.

The module can be used if a slave axis prior to connecting to a CAM should be moved to the target
position which has resulted by that.

Due to the fact that the module calculates the corresponding value within a cycle, a done-output is not
needed.

In-/Outputs (VAR_IN_OUT) of the module:

CamTableID : MC_CAM_ID
CAM; Output of MC_CamTableSelect.

Master : AXIS_REF
Master axis.

Slave : AXIS_REF
Axis for which the CAM target position is calculated.

Inputs (VAR_IN) of the module (all inputs not described in the folllowing correspond to those of
MC_CamIn):

Enable : BOOL
Activates the module.

Outputs of the module:

fStartPosition : LREAL

Calculated target position for the slave

Error : BOOL (Default: FALSE)

TRUE indicates that in the module an error has occured.

ErrorID : SMC_Error (INT)
Error number

SMC_CAMEditor,
SMC_CAMVisu

With these modules an Online-CAM-Editor can be created.

SMC_CAMEditor must be called in the SoftMotion-task, whereas SMC_CAMVisu should be called in a
slower task of lower priority.

Both modules should be connected with the corresponding visualization template (SMC_CAMEditor),
which represents the given CAM and allows the user to modify that CAM also during run time.

Additional Elements of the SM_PLCopen.lib

5-20 SoftMotion in CoDeSys 2.3

The red circle marks the current CAM point. That can be changed via the arrows in the lower left
corner. The buttons in the lower right can be used to select whether position, velocity or acceleration
should be displayed. The arrows in the upper bar can be used to move the master-, slave-position,
slave-velocity and –acceleration by the specific increment.

In-/Outputs (VAR_IN_OUT) of the module SMC_CAMEditor:

CAM : MC_CAM_REF
CAM to be visualized and modified.

Inputs of module SMC_CAMEditor:

Enable : BOOL (Default: FALSE)
Getting TRUE activates the module .

dYPeriod : LREAL
Slave period (for periodic CAMs).

bPeriodic : BOOL (Default: TRUE)
TRUE for periodic CAM, otherwise FALSE.

In-/Outputs (VAR_IN_OUT) of module SMC_CAMEditor:

ce:SMC_CAMEditor
SMC_CAMEditor-Instance.

SMC_CAMRegister

This function block represents a tappet control unit. It works - like MC_CamIn – on a MC_CAM_REF-
structure, negating the original path information and only reading the tappet information.

In-/Outputs (VAR_IN_OUT) of the function block:

Master : AXIS_REF
Describes the axis structure (see Chapter 2.4) which should switch the tappets.

CamTable : MC_CAM_REF
Description of a (maybe empty) CAM containing the description of the tappets.

bTappet : ARRAY [1..MAX_NUM_TAPPETS] OF BOOL

Chapter 5 - The Library SM_PLCopen.lib

SoftMotion in CoDeSys 2.3 5-21

Tappet bits.

Inputs of the function block:

Enable : BOOL (Default: FALSE)
At TRUE the function block starts to switch the tappets.

MasterOffset : REAL
Offset to be added to the master position.

MasterScaling : REAL (Default: 1)
General scale factor for master axis.

TappetHysteresis : REAL
Hysteresis around tappets.

DeadTimeCompensation : REAL
Dead time in sec. The position of the master axis to be expected will be calculated by linear
extrapolation.

Outputs of the function block:

Error : BOOL (Default: FALSE)

TRUE indicates that an error has occurred in the function block.

ErrorID : INT
Error number

EndOfProfile : BOOL
At the transition from the end of the path (profile) to the start this output gets true for the time period of
one cycle

SMC_GetTappetValue

This function block evaluates the output Tappets of function block MC_CamIn and contains the
current tappet status.

In-/Outputs (VAR_IN_OUT) of the function block:

Tappets : SMC_TappetData
Inputs of the function block:

iID : INT
Group-ID of the tappet to be evaluated.

bInitValue : BOOL
Initial value of the tappet. Is assigned at the first call.

bSetInitValueAtReset : BOOL
TRUE: at a restart of the CamIn function block the value of the tappet is set to bInitValue.

FALSE: at a restart of the CamIn function block the tappet value is retained.

Additional Elements of the SM_PLCopen.lib

5-22 SoftMotion in CoDeSys 2.3

Outputs of the function block:

bTappet : BOOL (Default: FALSE)

Tappet value

SMC_ReadSetPosition

This module reads the current set position of the drive.

SMC_SetTorque

This module can be used to create a torque, if the drive is in controller mode "torque".

Chapter 6 - The Library SM_CNC.lib

SoftMotion in CoDeSys 2.3 6-1

6 The Library SM_CNC.lib

6.1 Overview

This library provides modules for realizing the SoftMotion functionality in an IEC-program. For this
purpose it has to be included in the IEC-program. Among them there are modules and structures
which on the one hand execute the movements, which have been designed in the editors, and on the
other hand can realize profiles which get designed online by the IEC-program:

• SMC_NCDecoder Decoding of the path which has been programmed in the CNC-Editor
 in order to get structure objects

• SMC_ToolCorr Path-preprocessing: tool radius correction

• SMC_AvoidLoop Path-preprocessing: avoids loops in the path

• SMC_SmoothPath Path-preprocessing: slurs the path by splines

• SMC_RoundPath Path-preprocessing: rounds the path by circular arcs

• SMC_CheckVelocities Check of the end velocities of the segments

• SMC_Interpolator Conversion of the decoded, eventually preprocessed path objects to
 discrete points

• Auxiliary functions for moving and rotating a path

• Global variables Setting some internal parameters

• Structures SMC_POSINFO, SMC_GEOINFO, SMC_VECTOR3D and SMC_VECTOR6D
 Save of positions, path segments and vectors)

• Structure SMC_OUTQUEUE Managing GeoInfo-objects in a list of defined size

The modules and structures will be described in the following chapters. Also have a look at the
programming examples in Chapter 11)

Note: Regard that the CNC-Editor can compile a CNC program in two different ways: as program variable
(SMC_CNC_REF), which must run through Decoder- and if applicable path-preprocessing modules,
or as OUTQUEUE, which can be directly passed on to the Interpolator.

6.2 Modules

6.2.1 SMC_NCDecoder

The function block SMC_NCDecoder is used to convert a CNC program, which has been created in
the CNC-Editor, to a list of SoftMotion-GEOINFO-structure objects (SM_CNC.lib). One line of the
program is decoded per cycle.

Modules

6-2 SoftMotion in CoDeSys 2.3

Inputs of the module:

bExecute: BOOL
The function block will do a reset and start the decoding as soon as a rising edge is detected at this
input.

bAppend: BOOL
As long as this input is FALSE, at each reset the DataOutQueue will be cleared. As long as it is
TRUE, newly incoming data will be written to the end of the DataOutQueue.

bStepSuppress: BOOL
If this input is TRUE (default), lines of the CNC program, starting with ‚/’, will be ignored. At FALSE
(default) they will be processed anyway.

piStartPosition
Position of the point to be moved at the beginning of the path.
nSizeOutQueue: UDINT
Size of the data buffer, to which the list of GEOINFO structure objects should be written. This buffer
must be at least five times as big as a GEOINFO structure, this means about 2KB. If this is not the
case, SMC_NCDecoder will not execute any actions at all. The value can be set but may only be
modified later during a reset.

pbyBufferOutQueue: POINTER TO BYTE
This input must point to the first byte of the memory area which has been allocated for the
OUTQUEUE-structure. This area must be at least as big as defined in nSizeOutQueue. Typically the
allocation of the memory buffer is done in the declaration part of the IEC-program by defining a byte-
array (e.g. BUF: ARRAY[1..10000] OF BYTE; for a 10000 byte memory area). This value can be
predefined, but later it can only get modified during a reset.

In/Outputs (VAR_IN_OUT) of the module:

ncprog: BYTE
In this IN_OUT variable the CNC program (structure SM_CNC_REF, Drive_Basic.lib) will be passed
on. This program may have been created by the IEC-program or in the CNC-Editor.

Outputs of the module:

bDone: BOOL
This variable is set to TRUE, as soon as the processing of the program has been finished. Thereafter
the SMC_NCDecoder will not perform any actions until it gets a reset. If input bExecute is FALSE,
bDone will be set back to FALSE.

bError: BOOL
In case of an error this input gets TRUE.

wErrorID: SMC_ ERROR (INT)
This enum output describes an error which might be occurred during decoding. After an error the
processing will be stopped until a reset is done.

poqDataOut: POINTER TO SMC_OUTQUEUE
This variable points to a SMC_OUTQUEUE-structure, which manages the decoded SMC_GEOINFO-
objects.

Chapter 6 - The Library SM_CNC.lib

SoftMotion in CoDeSys 2.3 6-3

iStatus: SMC_DEC_STATUS (INT)
This enum-variable shows the current status of the module. Possible states:

WAIT_PROG 0 Program not yet found

READ_WORD 1 Word read

PROG_READ 2 End of program reached

iLineNumberDecoded: INT
This variable contains the line number (not the sentence number) of the last processed line.

iErr: SMC_DEC_ERROR (INT)
This enum-variable describes an error which may have occurred during decoding:

ERR_DEC_NO_ERROR 0 No error detected

ERR_DEC_ACC_TOO_LITTLE 1 Maximum acceleration is lower than one path-unit/sec2

ERR_DEC_RET_TOO_LITTLE 2 Maximum delay is lower than one path-unit/sec2

As soon as an error has occurred, the processing gets stopped until a reset will be done.

6.2.2 SMC_ToolCorr

The SMC_ToolCorr-module can be used for path-preprocessing. It
creates a shifted path basing on the originally defined profile. In the
shifted path each point of each path object has a definable distance to
the original point and the immediate neighbour points (Tool radius
correction). Thus the shifted path guarantees that each of its points
has a fix distance to the original path. A typical application is the
milling of a programmed contour with a milling drill of defined diameter.
In order to compensate the radius of the drill the milling drill must follow
an appropriately shifted path – which can be created by using the
SMC_ToolCorr Module.

! The following restriction must be regarded: If the outline and the
drilling radius are chosen in a manner that cross-over points would
result within the shifted path – which would effect that the desired
contour would be destroyed during passing the shifted path - then this
will not be regarded (see the drawing to the right of this paragraph). To
avoid such intersections, use the module SMC_AvoidLoop.

The SMC_ToolCorr module is working as described in the following:

All SMC_GEOINFO-objects which are found in the Input-OUTQUEUE-structure get checked one after
the other. If in one of the objects Bit1 (Bit2) of the variable Intern_Mark is set, then starting from there
– in direction of motion - the path will be shifted to the left (right) by the currently set tool radius. In
order to get a continuous path, a positioning object (MoveType = 100) is inserted, resp. if such a
positioning object is already preceding the object, it will be shifted directly to the start point of the
shifted path. Each further object then will be shifted also, until Bit0 of Intern_Mark gets set. This will
stop the tool radius correction. But also here a continuous prosecution of the path will be guaranteed
by using a positioning object. A shift in the opposite direction only can be started if the currently
started tool correction has been terminated before by setting Bit0. The SMC_NCDecoder will set these
bits, thereby reacting on the instructions G41/G42/G40. In other words: The tool radius correction
will be done for all objects which are placed between the instructions G41 and G40 resp. G42
and G40.

Modules

6-4 SoftMotion in CoDeSys 2.3

Inputs of the function block:

bExecute: BOOL
The function block will do a reset and start the tool correction as soon as a rising edge is detected at
this input.

bAppend: BOOL
As long as this input is FALSE, at each reset the DataOutQueue will be cleared. As long as it is
TRUE, newly incoming data will be written to the end of the DataOutQueue.

poqDataIn: POINTER TO SMC_OUTQUEUE
This is a pointer to the SMC_OUTQUEUE-structure object, which contains the SMC_GEOINFO-
objects of the path to be shifted; typically it points on the output ..DataOut of the preceding module
(e.g. the SMC_NCDecoder).

dToolRadius: LREAL
This variable contains the value, which determines – added to the current ToolRadius of the
SMC_GEOINFO-object – the tool radius by which the path should be shifted (see above). This value
can be modified online. Thus it is possible to predefine the value offline (by the SMC_GEOINFO-
structure) and to modulate it online. Thereby regard that a tool radius correction which is initiated
during the block is just being shifted, will cause an abort of the path correction and therefore should be
avoided ! But it is possible to do the radius correction during a reset or in a phase where it is
guaranteed that the module is not currently shifting a block (Status = TC_ORIG). Default: 0.

nSizeOutQueue: UDINT
This variable contains the size of the data buffer, to which the list of GEOINFO structure objects will
be written. This buffer must be at least five times as big as a GEOINFO structure, this means about
2KB. If this is not the case, SMC_NCDecoder will not execute any actions at all. The value can be set
but may only be modified later during a reset.

pbyBufferOutQueue: POINTER TO BYTE
This input variable must point to the first byte of the memory area which is allocated for the
OUTQUEUE-structure. This area must be at least as big as defined in nSizeOutQueue. Typically the
allocation of the memory buffer is done in the declaration part of the IEC-program by defining a byte-
array (e.g. BUF: ARRAY[1..10000] OF BYTE; for a 10000 byte memory area). This value can be
predefined, but later it only can be modified during a reset.

Outputs of the function block:

b_Done: BOOL
This variable will be set to TRUE as soon as the input data of DataIn have been processed
completely. Thereafter the module will not perform any further actions until it gets a reset.

bError: BOOL
In case of an error this input gets TRUE.

wErrorID: SMC_ERROR (INT)
In case of an error this input shows the error number.

poqDataOut: POINTER TO SMC_OUTQUEUE
This variable points to a SMC_OUTQUEUE-structure, which manages the decoded SMC_GEOINFO-
objects.

iStatus: SMC_TC_STATUS (INT)
This enum-variable shows the current status of the module. Possible states:

TC_ORIG 0 No tool radius correction at the object

TC_RIGHT 1 Shift objects to the right

Chapter 6 - The Library SM_CNC.lib

SoftMotion in CoDeSys 2.3 6-5

TC_LEFT 2 Shift objects to the left

TC_END 4 Processing of the objects has been terminated

6.2.3 SMC_AvoidLoop

The SMC_AvoidLoop function block can be used for path-preprocessing. It
creates a loopless path copy of a defined path. If in the original path an
intersection is detected, the path will be cut at this point, the loop will be
removed, and the path will be continued with the rest of the curve. Thus a
loopless, continuous path results.

See for a typical application in the description of the SMC_ToolCorr module.

The SMC_AvoidLoop function block is working as described in the following:

The module passes all SMC_GEOINFO-objects which are found in the input-SMC_OUTQUEUE-
structure. If in one of these objects Bit7 of the variable Intern_Mark is set, then the avoid-loop-
functionality will be activated. It will start to check whether there is any intersection point of the current
object with the subsequent SMC_GEOINFO-objects, which come before a SMC_GEOINFO-Object, in
which Bit6 of the variable Intern_Mark is set. This bit will terminate the avoid-loop-functionality. If no
intersections are found, the object will be copied unchanged to the Output-SMC_OUTQUEUE.
Otherwise the first of the intersecting objects will be cut at the intersection point, the SMC_GEOINFO-
objects positioned between the intersecting objects will be removed, and the new path will be
continued with the second of the two intersecting objects. The SMC_NCDecoder will set the Bits 6
and 7 of Intern_Mark as an reaction on the instructions G61/G60.

Regard: It depends on the size Input-SMC_OUTQUEUE whether the SMC_AvoidLoop module can
work correctly. If a loop contains more objects than can be stored in the SMC_OUTQUEUE, then the
loop cannot get detected !

Inputs of the module:

bExecute: BOOL
The function block will do a reset and start the path correction (avoiding loops) as soon as a rising
edge is detected at this input.

bAppend: BOOL
As long as this input is FALSE, at each reset the DataOutQueue will be cleared. As long as it is
TRUE, newly incoming data will be written to the end of the DataOutQueue.

poqDataIn: POINTER TO SMC_OUTQUEUE
This variable points to the SMC_OUTQUEUE-structure object, which contains the SMC_GEOINFO-
objects of the path; typically it points on the output ..DataOut of the preceding module (e.g. the
SMC_NCDecoder). It should be dimensioned appropriately (see above) !

nSizeOutQueue: UDINT
This variable contains the size of the data buffer, to which the list of GEOINFO structure objects will
be written. This buffer must be at least five times as big as a GEOINFO structure, this means about
2KB. If this is not the case, SMC_NCDecoder will not execute any actions at all. The value can be
predefined but later it only may be modified during a reset.

pbyBufferOutQueue: POINTER TO BYTE
This input must point to the first byte of the memory area which is allocated for the OUTQUEUE-
structure. This area must be at least as big as defined in nSizeOutQueue. Typically the allocation of
the memory buffer is done in the declaration part of the IEC-program by defining a byte-array (e.g.
BUF: ARRAY[1..10000] OF BYTE; for a 10000 byte memory area). The value can be predefined
but later may be modified only during a reset.

Modules

6-6 SoftMotion in CoDeSys 2.3

Outputs of the module:

This variable will be set to TRUE as soon as the input data of ...DataIn have been processed
completely. Thereafter the module will not perform any further actions until it gets a reset. If input
bExecute is FALSE, bDone will be reset to FALSE.

bError: BOOL
In case of an error this input gets TRUE.

wErrorID: SMC_ERROR (INT)
In case of an error, this input shows the error number.

poqDataOut: POINTER TO SMC_OUTQUEUE
This variable points to a SMC_OUTQUEUE-structure, which manages the SMC_GEOINFO-objects of
the loopless path.

iStatus: AL_STATUS (INT)
This enum-variable shows the current state of the module. Possible states:

AL_OFF 0 Avoid-Loop-functionality switched off

AL_ON 1 Avoid-Loop-functionality switched on

AL_END 2 Processing of the objects terminated

6.2.4 SMC_SmoothPath

The SMC_SmoothPath function block can be used for path-preprocessing. It smoothes path angles,
thus creating a smooth path (slur path). This is needed for applications where the exactness of the
path course is not as important as the velocity, and therefore angles, forcing to reduce the velocity to
0, must be avoided.

For this purpose the path will be cut in a defined distance to the angle and
a spline will be inserted. The distance is given on the one hand by the
SMC_GEOINFO-structure of the first object which should be smoothed,
and on the other hand by one of its inputs. The sum of both values is taken
as the radius of a circle which has its centre point in the path angle and
which will intersect the surrounding objects.

SMC_SmoothPath is working as described in the following:

All SMC_GEOINFO-objects which are found in the Input-OUTQUEUE-structure will be checked one
after the other. If in one of the objects Bit4 of the variable Intern_Mark is set, then the slurring will be
started for all subsequent objects until in one of them Bit3 of Intern_Mark is set. The
SMC_NCDecoder module will set these start and stop bits as a reaction to the instructions G51/G50.
In other words: The Smooth-Path functionality will be executed for all objects, which are placed
between the instructions G51 and G50.
Inputs of the function block:

bExecute: BOOL
The function block will do a reset and start the path correction (smoothing path) as soon as a rising
edge is detected at this input.

bAppend: BOOL
As long as this input is FALSE, at each reset the DataOutQueue will be cleared. As long as it is
TRUE, newly incoming data will be written to the end of the DataOutQueue.

Chapter 6 - The Library SM_CNC.lib

SoftMotion in CoDeSys 2.3 6-7

poqDataIn: POINTER TO SMC_OUTQUEUE
This variable points to the SMC_OUTQUEUE-structure object, which contains the SMC_GEOINFO-
objects of the unsmoothed path; typically it points to the output ..DataOut of the preceeding module
(e.g. the SMC_NCDecoder).

bEnable: BOOL
If this input is set to FALSE (default), the module is in waiting status, this means that it will not perform
any actions. With TRUE it will start resp. continue to slur the path.

bReset: BOOL
By setting this variable to TRUE the module will be reset to the start state. Thereby also the content of
the SMC_OUTQUEUE-structure DataOut will be removed. Thereafter the module cannot get active
again until bReset is reset to FALSE (default).

dEdgeDistance: LREAL
This input variable contains the value, which – added to the corresponding ToolRadius-value of the
SMC_GEOINFO-object – determines the (minimum) distance to an angle, at which the particular
objects will be cut and replaced by a spline (see above). This value can be modified online. Thus it is
possible to predefine offline (by the SMC_GEOINFO-structure) and to modulate online. Default: 0.

dAngleTol: REAL
This input describes the angle tolerance value (see chapter 3.3) , up to which a path bend should not
be smoothed.

nSizeOutQueue: UDINT
This variable contains the size of the data buffer, to which the list of GEOINFO structure objects will
be written. This buffer must be at least five times as big as a GEOINFO structure, this means about
2KB. If this is not the case, SMC_NCDecoder will not execute any actions at all. The value can be
predefined but later it only may be modified during a reset.

pbyBufferOutQueue: POINTER TO BYTE
This input must point to the first byte of the memory area which is allocated for the
SMC_OUTQUEUE-structure. This area must be at least as big as defined in nSizeOutQueue.
Typically the allocation of the memory buffer is done in the declaration part of the IEC-program by
defining a byte-array (e.g. BUF: ARRAY[1..10000] OF BYTE; for a 10000 byte memory area. The
value can be predefined but later it only may be modified during a reset.

Outputs of the function block:

bDone: BOOL
This variable will be set to TRUE as soon as the input data from ..DataIn are processed completely.
Thereafter the module will not perform any further actions until it gets reset. If input bExecute is
FALSE, bDone will be reset to FALSE.

bError: BOOL
In case of an error this input gets TRUE.

wErrorID: SMC_ERROR (INT)
In case of an error, this input shows the error number.

poqDataOut: POINTER TO SMC_OUTQUEUE
This output variable points to a SMC_OUTQUEUE-structure, which manages the slured
SMC_GEOINFO-objects.

Modules

6-8 SoftMotion in CoDeSys 2.3

6.2.5 SMC_RoundPath

The SMC_RoundPath function block is very similar to the SMC_SmoothPath module. It rounds
angles, which result at the junction of two lines, by circular arcs.

For this purpose the path will be cut in distance "r" to the angle and a spline
will be inserted. The distance is given on the one hand by the
SMC_GEOINFO-structure object of the first object which should be
smoothed, and on the other hand by the input variable dRadius.

The value of dRadius is dominant. This means that only if dRadius=0 the
value of the object will be regarded. If the defined value is higher than the half
length of one of the both SMC_GEOINFO-objects, then the half length will be
used.

The function block SMC_RoundPath is working as described in the following:

All SMC_GEOINFO-objects which are found in the Input-OUTQUEUE-Structure will be checked one
after the other. If in one of the objects Bit5 of the variable Intern_Mark is set, then starting there
angles will be rounded as long as in one of the subsequent objects Bit3 of Intern_Mark is set. The
SMC_NCDecoder module will set these bits as a reaction to the instructions G52/G50. In other words:
The Round-Path functionality will be executed for all objects, which are placed between the
instructions G50 and G51.
Inputs of the module:

bExecute: BOOL
The function block will do a reset and start the path correction (rounding path) as soon as a rising
edge is detected at this input.

bAppend: BOOL
As long as this input is FALSE, at each reset the DataOutQueue will be cleared. As long as it is
TRUE, newly incoming data will be written to the end of the DataOutQueue.

poqDataIn: POINTER TO SMC_OUTQUEUE
This variable points to the SMC_OUTQUEUE-structure object, which contains the SMC_GEOINFO-
objects of the unsmoothed path; typically on the output ..DataOut of the preceding module (e.g. the
SMC_NCDecoder).

bEnable: BOOL
If this input is set to FALSE (default), the module currently is in waiting status, this means that it will
not perform any actions. Getting TRUE it will start resp. continue to round the path.

bReset: BOOL
By setting this variable to TRUE the module will be reset to the start state. Thereby also the content of
the SMC_OUTQUEUE-structure ..DataOut will be removed. Thereafter the module cannot get active
again until bReset is reset to FALSE (default).

dRadius: LREAL
This input variable contains the value, which defines the (minimum) distance to an angle, at which the
particular objects will be cut and replaced by a spline (see above). This value can be modified online.
Thus it is possible to predefine offline (by the SMC_GEOINFO-structure) and to modulate online.
Default: 0.

dAngleTol: REAL
This input describes the angle tolerance value, up to which a path bend should not be smoothed..
nSizeOutQueue: UDINT
This variable contains the size of the data buffer, to which the list of GEOINFO structure objects will
be written. This buffer must be at least five times as big as a GEOINFO structure, this means about

Chapter 6 - The Library SM_CNC.lib

SoftMotion in CoDeSys 2.3 6-9

2KB. If this is not the case, SMC_NCDecoder will not execute any actions at all. The value can be
predefined but later it may only be modified during a reset.

pbyBufferOutQueue: POINTER TO BYTE
This input must point to the first byte of the memory area which is allocated for the
SMC_OUTQUEUE-structure. This area must be at least as big as defined in nSizeOutQueue.
Typically the allocation of the memory buffer is done in the declaration part of the IEC-program by
defining a byte-array (e.g. BUF: ARRAY[1..10000] OF BYTE; for a 10000 byte memory area).
The value can be predefined but later it may only be modified during a reset.

Outputs of the module:

bDone: BOOL
This variable will be set to TRUE as soon as the input data from ..DataIn are processed completely.
Thereafter the module will not perform any further actions until it gets reset. If input bExecute is
FALSE, bDone will be reset to FALSE.

bError: BOOL
In case of an error this input gets TRUE.

wErrorID: SMC_ERROR (INT)
In case of an error, this input shows the error number.

poqDataOut: POINTER TO SMC_OUTQUEUE
This output variable points on a SMC_OUTQUEUE-structure, which manages the rounded
SMC_GEOINFO-objects.

6.2.6 SMC_CheckVelocities

This module checks the velocities of the particular path segments. If the OutQueue has not been
created by the editor, but by the IEC program (e.g. by SMC_NCDecoder), this module must be called
immediately before the Interpolator.

The main task of this function is to check the path for sharp bends and to reduce the velocity to zero
at those.

Inputs of the module:

bExecute: BOOL
Bei steigender Flanke wird die Überprüfung begonnen.

poqDataIn: POINTER TO SMC_OUTQUEUE
This input points to the SMC_OUTQUEUE structure object, which describes the SMC_GEOINFO
objects of the path; typically it points to the output poqDataOut of the preceeding module (e.g.
SMC_NCDecoder/SMC_SmoothPath).

dAngleTol: REAL
This input describes the tolerance angle (angle leeway) up to which at a sharp bend of the path no
stop should be done.

Outputs of the module:

bError: BOOL
Gets TRUE in case of an error.

wErrorID: SMC_ERROR (INT)

In case of an error, this output shows the error number.

poqDataOut: POINTER TO SMC_OUTQUEUE
This output points on the SMC_OUTQUEUE structure object, which contains the path with the
permissible velocity values and now should be fed to the Interpolator.

Modules

6-10 SoftMotion in CoDeSys 2.3

SMC_LimitCircularVelocities

This module (SM_CNC.lib) checks the particular elements of the OutQueue and limits the path
velocities of circular elements against their radii. The path acceleration - if moving with constant
velocity (v) across an transition from a line to a circle with radius r - according to amount will jump from
0 to value . In order to limit this acceleration jump to value Acc, the velocity of the arc
at the transition must not exceed.

The module controls the transition of two elements (line on circular arc, circular arc on line and circular
arc on circular arc) and adapts the end velocity of the first element so that the acceleration jump does
not exceed the value dMaxAccJump.

Further on the module limits the path acceleration on circles on value dMaxAcc by appropriately
reducing the path-velocity of the circle.

Inputs of the module:

bExecute: BOOL
The module will perform a reset and will start tool radius correction, as soon as this input gets a rising
edge.

bAppend: BOOL
If FALSE, at each reset the output data queue DataOut will be cleared. If TRUE, the new data will be
written to the end of the DataOut queue.

poqDataIn: POINTER TO SMC_OUTQUEUE
This input points on the SMC_OUTQUEUE structure object, which contains the SMC_GEOINFO
objects of the path to be modified; typically it points on output DataOut of the preceding module
(e.g.SMC_NCDecoder).

dMaxAcc: LREAL
This input variable gives the maximum acceleration value permissible for circular arcs. A value equal 0
will cause that no check will be done.

dMaxAccJump: LREAL
This input variable gives the maximum acceleration jump (a) for a transition of two objects. A value
equal 0 will cause that no check will be done.

dVmaxPerRadiusUnit: LREAL
This input variable contains the value Acc4π² (see above), i.e. the maximum velocity of the arc at a
radius of 1.

nSizeOutQueue: UDINT
This variable tells about the size of the data buffer, to which the list of rounded GEOINFO structure
objects is written. This must be five times as big as a SMC_GEOINFO structure, thus must have a
size of ca. 2KB. If this is not the case, the SMC_SmoothPath module will not perform any actions. The
value can be set but only may be modified during a reset afterwards.

pbyBufferOutQueue: POINTER TO BYTE
This input must point on the first byte of the memory available for the OUTQUEUE structure. This
memory area at least must be as big as defined in Size_SMC_OUTQUEUE. Typically the the storage
allocation is done in the declaration part of the IEC program via a byte-array (e.g. BUF:
ARRAY[1..10000] OF BYTE; for a memory of 10000 Byte). Also this value can be set but only may be
modified afterwards during a reset.

Outputs of the module:

bDone: BOOL
This variable is set TRUE as soon as the input data from DataIn have been processed completely.
Afterwards the module will not perform any further action until a reset. If bExecute-Eingang gets
FALSE, bDone will be reset to FALSE.

Chapter 6 - The Library SM_CNC.lib

SoftMotion in CoDeSys 2.3 6-11

bError: BOOL
In case of an error this variable gets TRUE.

wErrorID: SMC_ERROR (INT)
In case of an error this variable gets the error number.

poqDataOut: POINTER TO SMC_OUTQUEUE
This output points on a SMC_OUTQUEUE structure managing the new SMC_GEOINFO objects.

6.2.7 SMC_Interpolator

The SMC_Interpolator function block is used to convert a continuous path which is described by
SMC_GEOINFO-objects, into discrete path position points, thereby regarding a defined velocity
profile and time pattern. These position points typically afterwards will be transformed by the IEC-
program (e.g. to drive-axis-positions) and sent to the drives.

Inputs of the function block:

bExecute: BOOL
The function block will do a reset and start the interpolation as soon as a rising edge is detected at
this input.

poqDataIn: POINTER TO SMC_OUTQUEUE
This variable points to the SMC_OUTQUEUE-structure object, which contains the SMC_GEOINFO-
objects of the unsmoothed path; typically it points to the output ..DataOut of the preceeding module
SMC_CheckVelocities.

bSlow_Stop: BOOL
If this variable is set to FALSE (default), the path will be passed non-stop. With TRUE the
SMC_Interpolator will be caused to reduce the velocity to 0 – according to the defined velocity profile
(byVelMode, see below) and the maximum delay of the current GEOINFO-object (dDecel, see below)
– and to wait until bSlow_Stop will be reset to FALSE.

bEmergency_Stop: BOOL
This input per default is FALSE. As soon as it gets TRUE, the SMC_Interpolator will cause an
immediate stop, this means that the position will be retained. Thus the velocity will be set to 0
immediately.

bWaitAtNextStop: BOOL

Modules

6-12 SoftMotion in CoDeSys 2.3

As long as this variable is FALSE (default), the path is passed non-stop. With TRUE the
SMC_Interpolator will be caused to retain the position at the next regular stop – this means at position
points where the velocity is 0, typically at path angles – and to pause until bWaitAtNextStop will be
reset to FALSE.

dOverride: LREAL
This variable can be used to handle the override. Valid values are higher than 0.01. dOverride is
multiplied with the scheduled velocity of the particular objects and thus allows to increase resp. reduce
the scheduled velocity in online mode. For example dOverride=1 (default) effects that the
programmed scheduled velocities will be executed, while an dOverride=2 would double them.

Please regard: The override can be modified at any time, but the modification will only be applied, if
currently no acceleration or deceleration is in progress !

iVelMode: SMC_INT_VELMODE
This input defines the velocity profile. The value "TRAPEZOID" (default) effects a velocity profile which
has a trapezoid form, "SIGMOID" one which has a S-form:

Example of a trapezoid velocity profile (byVel_Mode = 0):

Example of a sigmoid velocity profile (byVel_Mode = 1):

In the examples shown above the maximum acceleration (Accel) is lower than the maximum
deceleration (Decel). This causes the different slope values of the velocity curve at acceleration and
deceleration.

The advantage of a sigmoid velocity profile is that the associated acceleration – in contrast to the
trapezoid – is continuous and thereby brings a relief especially for heavy machines. This must be paid
by a slightly increased calculating time.

As the sigmoid velocity profile (blue) is designed in a way that changing to the trapezoid profile (red)
does not result in a change of the time needed for the passing the complete path, the restrained
increase of the acceleration at the beginning and the end must be compensated by a higher
acceleration in the midway. Thereby you must regard, that the maximum acceleration resp.
deceleration, which is programmed in the SMC_GEOINFO-objects, will be exceeded in the maximum
by the factor π/2:

Chapter 6 - The Library SM_CNC.lib

SoftMotion in CoDeSys 2.3 6-13

Any online-change will not be applied – like described for dOverride – until a currently running
acceleration or deceleration has been terminated.

In order to interpolate also the additional axes in the sigmoid form (blue, see drawing below) instead
of linearly (red), the corresponding bits must be set in the variable wSProfile of piStartPos of the
current object. This will effect that the additional axis does not get interpolated linearly concerning the
path length in the X-,Y-,Z-space, but in a polynomial dependency on this path length, thus resulting in
a sigmoid profile for the axis position, which has a velocity and acceleration of 0 at the beginning and
at the end of a path segment.

dwIpoTime: DWORD
This variable, which must be set for each call, contains the cycle time in µsec.

dLastWayPos: LREAL
This input allows the user to measure the stretch of the path which is racked out by the Interpolator.
Output dWayPos is the sum of dLastWayPos and the distance covered within the current cycle. If
dLastWayPos=0, dWayPos shows the length of the current path segment. If dLastWayPos is set
equal to output dWayPos, dWayPos always will be incremented by the current path segment and you
get the total length of the already covered path. In doing so dLastWayPos at any time can be (re)set
to 0 or a different value.

bAbort: BOOL
This input aborts the processing of a outline.

bSingleStep: BOOL
This input effects that the interpolator will stop at the transition between two path objects (also at
transitions with identic tangent) for the duration of one cycle. If bSingleStep is set TRUE during the
move, the interpolator will stop at the end of that object, which it can reach without exceeding the
scheduled deceleration value.

If the interpolator should stop at the next possible stop position (i.e. at points where the velocity is 0),
bWaitAtNextStop must be used.

bAcknM: BOOL
This input can be used to acknowledge a queuing additional option (M-option). If the input is TRUE,
this option will be deleted and the path processing will be continued.

Modules

6-14 SoftMotion in CoDeSys 2.3

Outputs of the function block:

bDone: BOOL
This variable will be set to TRUE as soon as the input data (poqDataIn) have been processed
completely. Hereafter the function block will not perform any further actions until a reset will be done. If
input bExecute is FALSE, bDone will be reset to FALSE.

bError: BOOL
In case of an error this input gets TRUE.

wErrorID: SMC_ERROR (INT)
This enumeration variable may describe an error which has occurred during the interpolation run.
After an error has occurred, the processing gets stopped until a Reset will be done.

Per each call the SMC_Interpolator – considering the predefined parameters, the velocity history and
the last position – will calculate and put out the next point. As soon as the processing of currently first
GEOINFO-object has been finished, it will be removed from the poqDataIn-SMC_OUTQUEUE-
structure.

piSetPosition: SMC_POSINFO
This variable contains the target position which has been calculated according to the predefines.
Set_Position is a SMC_POSINFO-structure and not only contains the Cartesian coordinates of the
target point on the path, but also the position of the additional axes.

iStatus: INT_STATUS (INT)
This enumeration variable shows the current status of the function block. Possible states:

IPO_UNKNOWN 0 Internal state. This state may not occur after a complete pass of the
SMC_Interpolator.

IPO_INIT 1 Module is in initialization state; DataIn currently is not full and also not yet
has been full.

IPO_ACCEL 2 Module currently is accelerating.

IPO_CONSTANT 3 Module currently is moving with constant velocity.

IPO_DECEL 4 Module currently is decelerating.

IPO_FINISHED 5 Processing of the GEOINFO list is terminated. Any further GEOINFO
objects which arrive subsequently in DataIn will not be processed.

IPO_WAIT 6 Module is waiting, because one of the following situations has occurred:
Emergency_Stop = TRUE
Slow_Stop = TRUE and Vel = 0
Wait_At_Next_Stop = TRUE and Vel = 0

bWorking: BOOL
This output gets TRUE, as soon as the processing of the list has been started but is not yet finished
(IPO_ACCEL or IPO_CONSTANT or IPO_DECEL or IPO_WAIT). Otherwise bWorking is FALSE.

iActObjectSourceNo: INT
Here you find the value of SourceLine_Nr of the currently passed GEOINFO-object of the DataIn-
queue. If the SMC_Interpolator does not work (any longer) (Working = FALSE), the value is "–1".

dVel: LREAL
This variable contains the current velocity which results if an object is moving from the preceeding
position to Set_Position within the given time Ipo_Time.

vecActTangent: SMC_VECTOR3D

Chapter 6 - The Library SM_CNC.lib

SoftMotion in CoDeSys 2.3 6-15

This structure contains the direction of the path valid for the position Set_Position. If Vel = 0 ,
vecAct_Tangent is filled up with zeros.

iLastSwitch: INT
This output shows the number of the last passed switch. Regard: If several switches have been
passed within one cycle, only the last one will be shown.

dwSwitches: DWORD
This DWORD describes the current switch status of all switches 1 – 32. Bit0 of the DWORD
represents switch1, Bit31 represents switch321, Bit31 for auxiliary mark 32. Thereby, in contrast to
iLastSwitch, it can be avoided that any switch is not regarded.

dWayPos: LREAL
For a description see above: input dLastWAyPos.

At each call the SMC_Interpolator will calculate and provide - regarding the given parameters, the
velocity history and the last path position - the subsequent path position point. If the first GEOINFO
object has been processed, it will be removed from the poqDataIn-SMC_OUTQUEUE structure.

wM: WORD
If the interpolator passes a M-object, i.e. a line describing an additional option, this output will be set to
the corresponding value and the function block will wait until it gets acknowledged by input bAcknM.

Please regard: At the end of a path run the variable SMC_OUTQUEUE is empty. If you want to process the
same outline once more, either you have to transform the CNC program via Decoder and Path-
Preprocessing-Modules to a SMC_OUTQUEUE structure, or you have to use the function
SMC_RESTOREQUEUE (also part of SM_CNC.lib). The latter is only possible, if the OUTQUEUE
buffer is so big that it can catch the complete path.

6.2.8 SMC_Interpolator2Dir

This module corresponds concerning function and allocation of its inputs and outputs to function block
SMC_Interpolator, with the difference that it can also reversely interpolate a path.

For this purpose input dOverride gets assigned a negative value, which makes SMC_Interpolator2Dir
interpolating in negative direction. For example this input can get assigned the analog velocity input of
a hand wheel, allowing the user to move forward and backward with a desired velocity.

Additional inputs and outputs of the module:

nDirection: SMC_Direction

Auxiliary Modules for Path Rotations, Translations and Scalings

6-16 SoftMotion in CoDeSys 2.3

The module outputs in which direction it is currently. Possible values: IPO_positive, PO_negative and
IPO_standstill.

There are the following preconditions for the use of the module:

1. The path must be completely go in poqDataIn. Due to the fact that the module must
alternately move forward and backward, the complete path must be available in the
memory.

2. An additional module, SMC_Interpolator2Dir_SlowTask, gets called:

This module is responsible for generating the backward-path. It has been split off from
SMC_Interpolator2Dir and thus can be out housed to a lower-prioritized task on fully stretched
systems with low performance.

Inputs of the module:

dAngleTol: LREAL
Angle tolerance fort he backward path. Typically identic to the angle tolerance of the original
path.

nSizeOutQueue: UDINT, pbyBufferOutQueue: POINTER TO BYTE
Size and pointer on data buffer, to which the backward path should be stored. Must be at least
that big that the complete path goes in.

Ipo2d: SMC_Interpolator2Dir
SMC_Interpolator2Dir-instance, for which the backward path should be generated.

6.3 Auxiliary Modules for Path Rotations, Translations and Scalings

The function blocks SMC_RotateQueue2D and SMC_TranslateQueue3D rotate resp. translate the
path which is stored in the SMC_OUTQUEUE.

The input variable poqDataIn is the pointer to the structure SMC_OUTQUEUE which describes the
path to get rotated resp. translated.

The input variable bEnable, initialized with FALSE, will avoid the rotation resp. translation of the path
until it is set to TRUE. Then all GEOINFO-objects found in poqDataIn will be processed. As soon as
bEnable gets FALSE, the modules will not execute any further modifications.

The input variable bReset, also initialized with FALSE, effects that the GEOINFO-objects which are
currently found in the poqDataIn, will not get rotated resp. translated, but only those which additionally
come in as from now.

• SMC_ROTATEQUEUE2D
The path stored in poqDataIn will be rotated around the Z-axis by the angle given by dPhi [°]. A
positive angle effects a positive rotation in mathematical sense (counterclockwise).

• SMC_TRANSLATEQUEUE3D
The path stored in poqDataIn will be translated according to the vector given by vec, which is of
structure type SMC_VECTOR3D (see SMC_VECTOR3D).

• SMC_SCALEQUEUE3D
The path contained in poqDataIn will be stretched by factor fScaleFaktor.

Chapter 6 - The Library SM_CNC.lib

SoftMotion in CoDeSys 2.3 6-17

As a sudden modification of the characteristic parameters of the rotation/translation (dPhi, vec) during
the processing might cause a break in the path, any changes of the corresponding inputs will not be
regarded until the SMC_OUTQUEUE is empty at poqDataIn, or a Reset (bReset) will be done.

In order to effect a rotation in the (XY)-plane around another point than (00), this means in order to
reach the point (XpYp), use a sequence of a translation per the vector (-Xp-Yp°0) , the rotation per the
desired angle dPhi and a further translation per the vector (XpYp°0) .

6.4 Settings via global variables

In „SoftMotion_CNC_Globals“there are defined several internal variables and constants. Some of
them can be modified:

Examination for zero (see 3.6, ‚Set epsilon values…’):

o g_fSMC_CNC_EPS (Epsilon value for accurate examination for zero)

o g_fSMC_CNC_EPS_RELUCTANT (Epsilon value for tolerant examination for zero)

6.5 Structures in the SM_CNC.lib

See in the following a selection of structures provided by the library SM_CNC.lib, which are used by
the library modules for managing the position data, the path segments (objects) and vectors:
SMC_POSINFO, SMC_GEOINFO, SMC_VECTOR3D, SMC_VECTOR6D. Further on the
SMC_OUTQUEUE-structure allows to manage GEOINFO-objects in a list of defined size.

SMC_POSINFO

This structure, which is part of the SMC_CNC.lib, describes the coordinates and the position of the
additional axes for the particular position points.

TYPE SMC_POSINFO:
STRUCT
 iFrame_Nr:INT;
 wAuxData:WORD;
 wSProfile:WORD;
 dX:LREAL;
 dY:LREAL;
 dZ:LREAL;
 dA:LREAL;
 dB:LREAL;
 dC:LREAL;
 dA1:LREAL;
 dA2:LREAL;
 dA3:LREAL;
 dA4:LREAL;
 dA5:LREAL;
 dA6:LREAL;
END_STRUCT
END_TYPE

The variables dX, dY and dZ describe the position in the coordinate system, dA1, ..., dA6 describe
the position of the additional axes. In iFrame_Nr the user can store further information, which is not
relevant for the SoftMotion modules. dA, dB and dC currently are not used.

wAuxData describes bit by bit which of the position axes should be calculated by the
SMC_Interpolator. wAuxData will be initialized with 2#111, that means that X-, Y- and Z-axis get
interpolated. If the first bit is set, the dX-position gets calculated, Bit 7 for example effects a
processing of dA2.

wSProfile in the same way describes for the additional axes (all besides X,Y-axes), whether they
should be interpolated by the Interpolator module linearly (FALSE) or in sigmoid (S-) shape (TRUE).
Bit2 stands for the Z-axis, Bit6 for P, Bit7 for Q, Bit8 for U, Bit9 for V and Bit10 for W.

Structures in the SM_CNC.lib

6-18 SoftMotion in CoDeSys 2.3

SMC_GEOINFO

This structure, which is part of the SMC_CNC.lib, contains the path objects. A (path) object is a
segment of the programmed path, which due to its geometrical properties completely can be stored in
the following structure:

TYPE SMC_GEOINFO:
STRUCT
 iObjNo:INT;
 iSourceLineNo:INT;
 iMoveType:MOVTYP;
 piStartPos:SMC_POSINFO;
 piDestPos:SMC_POSINFO;
 dP1:LREAL;
 dP2:LREAL;
 dP3:LREAL;
 dP4:LREAL;
 dP5:LREAL;
 dP6:LREAL;
 dP7:LREAL;
 dP8:LREAL;
 dT1:LREAL;
 dT2:LREAL;
 dToolRadius:LREAL;
 dVel:LREAL;
 dVelEnd:LREAL;
 dAccel:LREAL;
 dDecel:LREAL;
 dLength:LREAL;
 byInternMark:BYTE;
 dHelpPos: ARRAY[0..MAX_IPOSWITCHES] OF LREAL;
 iHelpID: ARRAY[0..MAX_IPOSWITCHES] OF INT;
END_STRUCT
END_TYPE

iObjNo: INT
This integer value describes any desired object number. It has no meaning for the actual path
description.

iSourceLineNo: INT
This integer value typically describes the source code line number of the CNC program. It has no
meaning for the actual path description.

iMoveType: MOVTYP (INT)
This enumeration contains the following valid values and describes the object type:

LIN 1 straight movement (G01)

CLW 2 circle in clockwise direction (G02)

CCLW 3 circle in counterclockwise direction (G03)

SPLINE 5 spline, parable (G05, G06)

ELLCLW 8 Ellipse clockwise (G08)

ELLCCLW 9 Ellipse counterclockwise (G09)

LINPOS 100 straight positioning (G00)

INITPOS 110 blind positioning (start point not yet known; a continuous position will be added by
the SMC_Interpolator)

MCOMMAND 120 Additonal option, M-option

piStartPos: SMC_POSINFO
This structure describes the exact start position of the object. (will be ignored if Move_Type =
INITPOS).

piDestPos: SMC_POSINFO
This structure describes the exact end position of the object.

Chapter 6 - The Library SM_CNC.lib

SoftMotion in CoDeSys 2.3 6-19

dP1, ..., dP8: LREAL
These variables contain, depending on the Move_Type (see above), further path describing
information:

LIN
LINPOS

not relevant, because the complete information already is contained in Start_Pos and
Dest_Pos

CLW
CCLW

dP1: X-coordinate of the circle centre

dP2: Y-coordinate of the circle centre

dP3: Circle radius

SPLINE spline parameter

ELLCLW,
ELLCCLW

P1: X-Coordinate of the circle centre

P2: Y-Coordinate of the circle centre

P3: X-Component of the mainaxis-1-vector

P4: Y-Component of the mainaxis-1-vector

P5: Length of the main axis

P6: Length of the sub-axis

P7: Direction of the main axis (°)

P8: Ratio P6/P5

INITPOS not relevant

dT1, dT2: LREAL
These variables contain the start and the end position of the parameter. Depending on the
Move_Type this means:

LIN
LINPOS

not relevant, because the complete information already is contained Start_Pos and
Dest_Pos

CLW

dT1: start angle in mathematical sense (degree):
 (0 = East, 90 = North, 180 = West, 360 = South)

dT2: apex angle of the circle, length of the circular arc
 (degree): (e.g.: 90=quarter of a circle, 180 =semicircle)

CCLW

dT1: start angle in mathematical sense (degree):
 (0 = East, 90 = North, 180 = West, 360 = South)

dT2: negative apex angle of the circle:
 (e.g.: -90=quarter of circle, -180 = semicircle)

SPLINE start- and end value of parameter "t" (see description of a spline). Default: 0 and 1.

INITPOS not relevant

dToolRadius: LREAL
This variable contains the information necessary for the path-preprocessing (see The SMC_ToolCorr
Module, The SMC_RoundPath Module). The entry is without any meaning if none of the appropriate
path-preprocessing modules is called (SMC_ToolCorr, SMC_RoundPath).

dVel, dVelEnd: LREAL

Structures in the SM_CNC.lib

6-20 SoftMotion in CoDeSys 2.3

These variables, which must be assigned in any case, contain information on the velocity profile of the
object. dVel describes the target velocity, which should be reached, dVelEnd describes the velocity
which must be run at the end of the object (see The SMC_Interpolator Module) (path units/sec).

dAccel, dDecel: LREAL
dAccel describes the maximum allowed acceleration, dDecel the maximum allowed deceleration (path
units/sec2). Both variables are predefined with "100".

dLength: LREAL
This variable, which must be assigned in any case, contains the length of an object (path units).

byIntern_Mark: BYTE
This variable describes start and end of path-preprocessing actions:

Bit 0 set Stop tool radius correction after this object

Bit 1 set Start tool radius correction to the left of this object

Bit 2 set Start tool radius correction to the right of this object

Bit 3 set Stop path rounding/smoothing after this object

Bit 4 set Start path rounding/smoothing at this object

Bit 4 set Start path rounding at this object

Bit 6 set Stop avoiding loops after this object

Bit 7 set Start avoiding loops at this object

dHelpPos: ARRAY[0..MAX_IPOSWITCHES] OF LREAL,
iHelpID: ARRAY[0..MAX_IPOSWITCHES] OF INT:
These variables describe the relative position (0: Object start, 1:Object end; similar to G-Code: O) and
the ID (cp. G-Code: H) of the auxiliary switches.

If the current object is a MCOMMAND, iHelpID[0] will contain the number of the M-option.

SMC_VECTOR3D

This structure, which is part of the SM_CNC.lib, describes a three-dimensional vector:
TYPE SMC_VECTOR3DQ
STRUCT
 dXQLREALR
 dYQLREALR
 dZQLREALR
END_STRUCT
END_TYPE

SMC_VECTOR6D

This structure, which is part of the SM_CNC.lib, describes a six-dimensional vector:
TYPE SMC_VECTOR6DQ
STRUCT
 dXQLREALR
 dYQLREALR
 dZQLREALR
 dAQLREALR
 dBQLREALR
 dCQLREALR
END_STRUCT
END_TYPE

SMC_OUTQUEUE
and its Functions

This structure, which is part of the SM_CNC.lib, can be used to manage GEOINFO-objects in a list of
defined size.

Chapter 6 - The Library SM_CNC.lib

SoftMotion in CoDeSys 2.3 6-21

TYPE SMC_OUTQUEUE Q
STRUCT
 wOUTQUEUEStructIDQ WORDR
 pbyBufferQ POINTER TO BYTER
 nSizeQ UDINTR
 nReadPosQ UDINTR
 nWritePosQ UDINTR
 bFullQ BOOLR
 bEndOfListQ BOOLR
 byGeneratorQ BYTER
END_STRUCT
END_TYPE

Via variable wOUTQUEUEStructID, which has a fix value, the modules internally check whether the
provided structure variable is of type SMC_OutQueue.
The variable byGenerator describes the originator of the queue. This information is used by the
Interpolator to check whether module SMC_CheckVelocities has been processed as last one as
prescribed. The following values are defined:

originator value
SMC_NCDecoder 1
SMC_AvoidLoop 10
SMC_LimitCircularVelocity 11
SMC_RoundPath 12
SMC_SmoothPath 13
SMC_ToolCorr 14
SMC_RotateQueue2D 30
SMC_ScaleQueue3D 31
SMC_TranslateQueue3D 32
SMC_CheckVelocities 254
CNC-Editor 255

The SoftMotion-library SM_CNC.lib provides the following modules for the handling of a
SMC_OUTQUEUE-structure object:

BOOL SMC_RESTOREQUEUE(Enable: BOOL, POQ: POINTER TO SMC_OUTQUEUE)

This function restores an already interpolated resp. otherwise processed structure. This is only
possible, if the list at POQ can contain the complete path.

POINTER TO SMC_OUTQUEUE SMC_APPENDOBJ(POQ: POINTER TO SMC_OUTQUEUE, PGI:
POINTER TO SMC_GEOINFO)

This boolean function appends the GEOINFO object, which is passed by PGI, to the end of the list
(POQ), if this list has been initialized correctly and is not yet filled completely. In case of success the
function returns a pointer to the new list element, otherwise 0.
BOOL SMC_DELETEOBJ(POQ: POINTER TO SMC_OUTQUEUE, N: UINT)

This boolean function deletes the N-th object from the list (POQ), whereby counting starts with 0. If N-
1 is greater than the number of GEOINFO objects stored in the list, nothing will happen and FALSE
will be returned, otherwise TRUE.

UINT SMC_GETCOUNT(POQ: POINTER TO SMC_OUTQUEUE)

This function of data type UINT returns the number of objects which are stored in the
SMC_OUTQUEUE list (POQ).

POINTER TO SMC_GEOINFO GETOBJFROMEND(POQ: POINTER TO SMC_OUTQUEUE, N:
UINT)

This function returns – provided that POQ is initialized correctly and that there are at least N+1
elements – a pointer to the N-th GEOINFO object (start counting from the end) of the list (POQ); so for
N=0 the last list element would be returned.

Initialization of the structure:

Structures in the SM_CNC.lib

6-22 SoftMotion in CoDeSys 2.3

The SoftMotion modules SMC_NCDecoder, SMC_SmoothPath, SMC_RoundPath, SMC_AvoidLoop
and SMC_ToolCorr, which provide a pointer to an internally handled OUTQUEUE-structure,
automatically will do the initialization of this structure. The modules SMC_SmoothPath,
SMC_RoundPath, SMC_ToolCorr, SMC_AvoidLoop and SMC_Interpolator need the pointer on a
correct OUTQUEUE list as an input. If this list is programmed and filled "manually", then the correct
initialization also must be done manually. For this purpose the first two variables (buffer, size) have to
be set. It is strictly recommended to use the above described functions for working with a
SMC_OUTQUEUE structure, and to avoid – after the initialization – any modifications of the other
parameters.

Components of the structure:

pbyBuffer: POINTER TO BYTE
This variable contains the address of a coherent memory buffer, which is allocated for the GEOINFO-
objects. This buffer must be assigned in the IEC program and its address then be written to this
variable. The assignment in the declaration part e.g. can be done by using a byte-array (BUF:
ARRAY[1..10000] OF BYTE; for a 10000 byte memory area).

nSize: UDINT
The size of the memory area which is allocated by pbyBuffer.

nReadPos: UDINT
Relative address of the first object in the list (referring to the first byte of the allocated memory buffer).

nWritePos: UDINT
Relative Address of the first free byte following the object list (referring to the first byte of the allocated
memory buffer).

bFull: BOOL
This variable will be set to TRUE by the function APPENDOBJ as soon as the list is filled up and only
space is left for three further GEOINFO objects (safety buffer). DELETEOBJ will set it back to FALSE
as soon as elements get removed from the list.

bEndOfList: BOOL
The SoftMotion modules, which get an OUTQUEUE-structure as an input, do not start the processing
of this queue until it has been filled completely in order to avoid e.g. a data underrun
(SMC_Interpolator). Due to the fact that during working on the last SMC_GEOINFO-objects of a path
the OUTQUEUE is not full any longer, bEndOfList must be set to TRUE as soon as the last
SMC_GEOINFO-object has been stored, in order to keep the processing running. If the list is empty
thereafter, but should be filled up again, bEndOfList must be reset to FALSE.

SMC_CNC_REF

In this data structure parsed G-Code-files are managed:
TYPE SMC_CNC_REF :
STRUCT
 wCNCREFStructID: WORD := 16#BA56;
 nElements: UDINT;
 diReadPos: UDINT := 0;
 udiBuffer: UDINT := 16#FFFFFFFF;
 pgc: POINTER TO SMC_GCODE_WORD := 0;
 piStartPosition: SMC_POSINFO;
 strProgramName:STRING := '';
END_STRUCT
END_TYPE

Via variable wCNCREFStructID, which has a fix values, the modules check internally, whether the
consigned structure variable is of type SMC_CNC_REF.

Variable pgc points on the first SMC_GCODE_WORD.

nElements contains the number of SMC_GCODE_WORD structures at pgc.

The start position of the CNC program is stored in piStartPosition, its name is stored in
strProgramName.

Chapter 6 - The Library SM_CNC.lib

SoftMotion in CoDeSys 2.3 6-23

The variable diReadPos and udiBuffer are used internally.

SMC_GCODE_WORD

In this data structure G-Code words are stored:

TYPE SMC_GCODE_WORD :
STRUCT
 byLetter:BYTE:=0;
 fValue:LREAL:=0;
 diValue:DINT:=0;
 pAdr:POINTER TO BYTE:=0;
 byVarType:BYTE:=0;
END_STRUCT
END_TYPE

byLetter gets the ASCII-code of the letter of the word, fValue and diValue get the value of this letter as
floating point- and integer number. If instead of a fix values a variable is used, pADR contains a
pointer on this variable and byVarType contains the variables’ data type:

1 INT

2 BYTE

3 WORD

4 DINT

5 DWORD

6 REAL

14 SINT

15 USINT

16 UINT

17 UDINT

22 LREAL

6.6 Path-CAMs with the SMC_XInterpolator

The SMC_XInterpolator function block realizes a mixture of CAM and CNC. Imagine you want to cut a
specified form (described by G-code) out of a workpiece, whereby the workpiece is moved - by
another process - (e.g. along the X-axis) and the other axes (Y, Z, etc.) should be controlled
according to the current position of the workpiece (X) and the target given by the path outline.

The motion of the workpiece always follows the x-direction (other cases can be mapped on this by a
rotation).

The SMC_XInterpolator module has the following inputs and outputs:

Path-CAMs with the SMC_XInterpolator

6-24 SoftMotion in CoDeSys 2.3

Inputs of the function block:

bExecute: BOOL
The module will reset and will start interpolation as soon as this input gets a rising edge.

poqDataIn: POINTER TO SMC_OUTQUEUE
This input points on the SMC_OUTQUEUE structure object which contains the SMC_GEOINFO-path
objects to be interpolated.

dLastWayPos: LREAL
This input enables the user to measure the path length which is covered by the interpolator. Output
dWayPos is the sum of dLastWayPos and the distance covered within the current cycle. If
dLastWayPos=0, dWayPos gets the length of the current path section. If you set dLastWayPos equal
to output dWayPos, dWayPos always will be incremented by the current path section and you will get
the total path length. Thereby dLastWayPos always can be set (back) to 0 or another value.

bAbort: BOOL
This input aborts the processing of an outline.

eDirection: MC_Direction
This input tells whether the workpiece is moved along the x-axis in positive (positive) or negative
(negative) direction. Other values are not allowed.

dXOffset: LREAL
Offset relative to the x-axis position.

X_Axis: AXIS_REF
X-axis, position of the workpiece.

Outputs of the function block:

bDone: BOOL
This variable will be set TRUE, if the input data from DataIn are processed completely. Hereafter the
module will perform no further actions until to a reset. If input bExecute is FALSE, bDone will be reset
to FALSE.

bError: BOOL
If an error occurs this output gets TRUE.

wErrorID: SMC_ERROR (INT)
If applicable, this Enum describes an error detected during interpolation. After an error the processing
will be stopped until a reset.

Chapter 6 - The Library SM_CNC.lib

SoftMotion in CoDeSys 2.3 6-25

piSetPosition: SMC_POSINFO
Set_Position contains the desired position calculated according to the demand. Set_Position is a
SMC_POSINFO-structure and not only contains the Cartesian coordinates of the path point to be
driven to, but also the position of the additional axes.

iStatus: SMC_INT_STATUS (INT)
This Enum-variable describes the current status of the module. Possible states:

IPO_UNKNOWN 0 Internal state. This state may not occur after a complete run of the
SMC_Interpolator.

IPO_ACCEL 2 Module currently accelerating.

IPO_CONSTANT 3 Module currently running with constant velocity.

IPO_DECEL 4 Module currently braking.

IPO_FINISHED 5 Processing of GEOINFO-list is terminated. GEOINFO-objects subsequently
arriving in DataIn will not be processed.

bWorking: BOOL
This output gets TRUE as soon as the processing of the list has been started but is not yet
terminated. (IPO_ACCEL or IPO_CONSTANT or IPO_DECEL or IPO_WAIT). Otherwise Working is F
FALSE.

iActObjectSourceNo: INT
Contains entry SourceLine_Nr of the currently passed GEOINFO-object of the DataIn-queue. “-1” if
the SMC_Interpolator does not work (any longer) (Working = FALSE).

dVel: LREAL
This variable contains the current velocity, resulting if an object is moving within time Ipo_Time from
the preceding coordinate to Set_Position.

vecActTangent: SMC_VECTOR3D
This structure contains the path direction in point Set_Position. In case of Vel = 0 also in Act_Tangent
there are only zeros.

 iLastSwitch: INT
This variable contains the number of the last passed auxiliary mark. If within one cycle multiple
auxiliary marks should be passed, always only the last one will be dumped.

dwSwitches: DWORD
This DWORD contains the current switch status of all auxiliary marks between 1 and 32. Bit0 of the
DWORD signifies auxiliary mark 1, Bit31 signifies auxiliary mark 32. Thus, other than with
iLastHelpMark, the loss of an auxiliary mark can be eliminated.

dWayPos: LREAL
Description see input dLastWayPos.

If the XInterpolator is active, it will search that position on the specified path, which matches the
current X-position and will dump the corresponding path-point in piSetPosition. In order to make this
possible without jumps, for each X-position always an unique path position must exist. For example
the following path would be valid:

Path-CAMs with the SMC_XInterpolator

6-26 SoftMotion in CoDeSys 2.3

Chapter 7 - The library SM_CNCDiagnostic.lib

SoftMotion in CoDeSys 2.3 7-1

7 The library SM_CNCDiagnostic.lib
This library provides auxiliary modules which can be very useful during the implementation phase,
because they help to display the data which are exchanged between the modules.

7.1 Function blocks for the analysis of SMC_CNC_REF data

7.1.1 The function block SMC_ShowCNCREF

This module can display the first ten lines of a NC program, which is available in form of a data
structure SMC_CNC_REF, in text strings (Din66025). The output is given in an array of string (cnostr)
containing the text lines. The visualization template VISU_SMC_ShowCNCRef can display these
outputs.

7.2 Function blocks for analysis of SMC_OutQueue data

7.2.1 The function block SMC_ShowQueue

This module provides the first ten SMC_GeoInfo objects of an OutQueue in form of an ARRAY OF
POINTER TO SMC_GeoInfo. Some important elements can then be displayed by the visualization
template VISU_SMC_ShowQueue. Among them are: object number, line number, object type, start
position (X/Y/Z), end position (X/Y/Z), set velocity and final velocity.

Function blocks for analysis of SMC_OutQueue data

7-2 SoftMotion in CoDeSys 2.3

Chapter 8 - The Library SM_Trafo.lib

SoftMotion in CoDeSys 2.3 8-3

8 The Library SM_Trafo.lib

8.1 Overview

This library is an extension for the SM_CNC.lib and provides modules, which can be used for
transformation of GEO- to drive coordinates and the axis control. There are modules which control
drives with target values, and simultaneously watch the target values and detect jumps.

Besides that there are modules for mathematic forward and backward transformation for some usual
kinematics. Instances of the forward-transformation-modules can be connected with the also provided
visualization-templates, which allow an immediate and simple visualization.

8.2 Transformation function blocks

The modules which refer to a special kinematics belong together in pairs, whereby that module which
is named SMC_TRAFO_<Kinematics>, proceeds a backward calculation, and that which is named
SMC_TRAFOF_<Kinematics> proceeds a forward calculation. Each instance of a
SMC_TRAFOF_<Kinematics>-module can be connected to a visualization template which is named
SMC_VISU_<Kinematics>.

8.2.1 Portal Systems

For portal systems no transformation must be done, thus the modules just add offset on the x-, y- and
z-axes.

SMC_TRAFO_Gantry2

pi: SMC_PosInfo

Target position vector. Output of the Interpolator.

dOffsetX, dOffsetY: LREAL

Offset for x- and y-axis.

dx, dy: LREAL

Target values for x- and y-axis.

Transformation function blocks

8-2 SoftMotion in CoDeSys 2.3

SMC_TRAFOF_Gantry2

dOffsetX, dOffsetY: LREAL

Offset for x- and y-axis. Same values as described for SMC_TRAFO_Gantry2.

minX, maxX, minY, maxY: LREAL

Move range (for visualization).

DriveX, DriveY: AXIS_REF

x-, y-axis.

dx, dy: LREAL

x-, y-position in Geo-coordinates.

dnx, dny, dnOffsetX, dnOffsetY: LREAL

Standardized x- and y-position [0..1] and offsets (for visualization).

ratio: LREAL

Ratio of x-interval and y-interval (for visualization).

SMC_TRAFO_Gantry3

pi: SMC_PosInfo

Target position vector. Output of the Interpolator.

dOffsetX, dOffsetY, dOffsetZ: LREAL

Offset for x-, y- und z-axis.

dx, dy, dz: LREAL

Target values for x-, y- and z-axis.

Chapter 8 - The Library SM_Trafo.lib

SoftMotion in CoDeSys 2.3 8-3

SMC_TRAFOF_Gantry3

dOffsetX, dOffsetY, dOffsetZ: LREAL

Offset for x-, y- and z-axis. Same values as described for SMC_TRAFO_Gantry3.

minX, maxX, minY, maxY: LREAL

Move range (for visualization).

DriveX, DriveY, DriveZ: AXIS_REF

x-, y-, z-axis.

dx, dy, dz: LREAL

x-, y-, z-position in GEO-coordinates.

dnx, dny, dnOffsetX, dnOffsetY: LREAL

Standardized x- and y-position [0..1] and offset (for visualization).

ratio: LREAL

Ratio of x-interval and y-interval (for visualization).

GantryCutter

The modules SMC_TRAFO<n>_Gantry<n> also exist as SMC_TRAFO<n>_GantryCutter<n>. These
function blocks do transformations for portal systems with one rotation axis, which is controlled in a
way, that it points along the current path tangent. As additional inputs they get the rotation axis
(DriveR), which must be defined as rotary axis with period 360, an offset (dOffsetX) and the direction
of rotation (iDirectionR). The module for inverse transformation additionally needs the vector of the
current path tangent (v), which is an output of the Interpolator.

SMC_TRAFOV_Gantry

Some of the above described reverse transformations are available in a version, in which also the
path velocity and path direction are used as a control variable for the axes. Those start with
„SMC_TRAFOV_“ instead of „SMC_TRAFO_“. As additional inputs they need the path tangent (v) and
path velocity (dVel) from the Interpolator. Besides the set positions they also show the set velocities
(dvx/dvy/dvz). The advantages of this method is that the lag error in the drive can be minimized by
doing an anticipatory control of the velocity – provided the drive is supporting this mode. For this
reason each axis should be controlled by the SMC_ControlAxisByPosVel module.

Transformation function blocks

8-4 SoftMotion in CoDeSys 2.3

8.2.2 Portal Systems with Tool Offset

There are machine portals, whose xyz-position does not match with the tool mesh point, because this
is not positioned axially in the z-axis, but translated (offset). If the z-axis cannot be rotated, this is a
constant xy-offset, which can be fed as such into the standard Gantry-transformation.

However if a rotation axis by z is involved, this will not be constant offset, in this case the offset will
depend on the position of the C-axis.

You must differentiate whether the tool is to be approximated as a line (if the vector between tool
mesh point and axis and the scheduled alignment of the tool are matching)
(->SMC_TRAFO_Gantry2Tool1) or as a parallelogram resp. a rectangular triangle
(SMC_TRAFO_Gantry2Tool2):

In the example shown in the following figure the tool cannot be approximated as a line, but must be
approximated as a rectangular triangle:

In principle instead of the one-dimensional transformation you can also modulate the path with tool
translation (tool can be approximated as a line), appropriately via SMC_Toolcorr. The difference
between the two methods is the velocity of the tool point. When you are using the modulation via
SMC_ToolCorr, the velocity of the rotation point is controlled according to the presettings made in the
CNC program (F, E) (whereby the velocity of the tool point can vary). When you are using the one-
dimensional transformation, the velocity of the tool point is determined by the CNC program.

For the calculation of the tool’s orientation (dAlpha) the following function can be used:

SMC_CalcDirectionFromVector

SMC_VECTOR3D

Input vector v typically is the output vecActTangent of the Interpolator.

Chapter 8 - The Library SM_Trafo.lib

SoftMotion in CoDeSys 2.3 8-5

eDir: SMC_VECTORDIR

Input eDir specifies whether the direction should be calculated at a tangent to the path
(SMC_tangential), or oppositely (SMC_opp_tangential) or orthogonally to the path (SMC_orthogonal_r
(right to the path tangent) resp. SMC_orthogonal_l (left to the path tangent)).

dDir: LREAL

Output dDir is in angle degrees and remains constant for phases in which the Interpolator stands (v ist
null-vector). eDir mostly is used as scheduled value (SMC_ControlAxisByPos) for the directional axis
and as input dAlpha for the transformation.

SMC_TRAFO_Gantry2Tool1

pi: SMC_PosInfo

Target position vector. Output of the Interpolator.

dOffsetX, dOffsetY: LREAL

Offset for x- and y-axis.

dAlpha: LREAL

Orientation of the toll in angle degrees.

dToolA: LREAL

Length of the tool; Distance between pivot and tool point.

dx, dy: LREAL

Scheduled values for x- and y-axis.

SMC_TRAFOF_Gantry2Tool1

dOffsetX, dOffsetY: LREAL

Offset for x- and y-axis. Same values as for SMC_TRAFO_Gantry2.

dAlpha: LREAL

Orientation of the tool in angle degrees.
dToolA: LREAL

Length of the tool; Distance between pivot and tool point.

Transformation function blocks

8-6 SoftMotion in CoDeSys 2.3

minX, maxX, minY, maxY: LREAL

Motion range (for visualization).

DriveX, DriveY: AXIS_REF

x-, y-axis.

dx, dy: LREAL

x-, y-position in GEO coordinates.

dnx, dny, dnl, dnOffsetX, dnOffsetY: LREAL

standardised x- and y-position [0..1], tool length and offsets (for visualization).

ratio: LREAL

x-interval / y-interval ration (for visualization).

SMC_TRAFO_Gantry2Tool2

pi: SMC_PosInfo

Target position vector. Output of the Interpolator.

dOffsetX, dOffsetY: LREAL

Offset for x- and y-axis.

dAlpha: LREAL

Orientation of the tool in angle degrees.
dToolA, dToolB: LREAL

Leg length of the rectangular triangle which is between the pivot and the tool point. dToolA is the
length of the leg at a tangent of the path, dToolB is the length of the leg which is orthogonal to the
path.

If dToolB is positive, the tool point (x/y) is shifted to the left referring to the tool orientation, otherwise
to the right.

dx, dy: LREAL

Scheduled values for x- and y-axis.

Chapter 8 - The Library SM_Trafo.lib

SoftMotion in CoDeSys 2.3 8-7

SMC_TRAFOF_Gantry2Tool2

dOffsetX, dOffsetY: LREAL

Offset for x- and y-axis. Same values as for SMC_TRAFO_Gantry2.

dAlpha: LREAL

Orientation of the tool in angle degrees.
dToolA, dToolB: LREAL

Length of the tool; Distance between pivot and tool point.

minX, maxX, minY, maxY: LREAL

Motion range (for visualization).

DriveX, DriveY: AXIS_REF

x-, y-axis.

dx, dy: LREAL

x-, y-position in GEO-coordinates.

dnx, dny, dnl1, dnl2, dnOffsetX, dnOffsetY: LREAL

standardised x- and y-position [0..1], tool length and offsets (for visualization).

ratio: LREAL

x-interval /y-interval ration (for visualization).

Transformation function blocks

8-8 SoftMotion in CoDeSys 2.3

8.2.3 H-Portal-System with stationary drives

This kinematic system is similar to those described above, but the drives are mounted stationary and
move the sledge and the y-axis over a multi-turned-round belt (displayed pink-colored in the picture).

The transformation fits fort he following drive configurations; other configurations can be reached by
interchanging x and y:

x

y
A

B +

+

x

y

A +

+ B

Please regard, that for this transformation a special reference move is necessary. If you want a move
in y-direction, the drives A and B must be moved in parallel.; for a pure x-move they have to be
counter rotated. If the reference position has been found, the x- and y-values calculated by the
forward transformation FB are used as offset (dOffsetX and dOffsetY).

SMC_TRAFO_GantryH2

pi: SMC_PosInfo

Target position vector. Output of the Interpolator

dOffsetX, dOffsetY: LREAL

Offset for x- and y-axis.

da, db: LREAL

Target values for A- and B-axis.

Chapter 8 - The Library SM_Trafo.lib

SoftMotion in CoDeSys 2.3 8-9

SMC_TRAFOF_GantryH2

dOffsetX, dOffsetY: LREAL

Offset for x- and y-axis. Same values as described for SMC_TRAFO_GantryH2.

minX, maxX, minY, maxY: LREAL

Move range (for visualization).

DriveA, DriveB: AXIS_REF

A-, B-axis.

dx, dy: LREAL

x-, y-position in Geo-coordinates.

dnx, dny, dnOffsetX, dnOffsetY: LREAL

Standardized x- and y-position [0..1] and offset (for visualization).

ratio: LREAL

Ratio of x-interval and y-interval (for visualization).

8.2.4 2-Jointed Scara-Systems

Transformation function blocks

8-10 SoftMotion in CoDeSys 2.3

SMC_TRAFO_Scara2

pi: SMC_PosInfo

Target position vector. Output of the Interpolator.

dOffsetA, dOffsetB: LREAL

Offset for A- and B-axis.

dArmLength1, dArmLength2: LREAL

Length of first and second arm.

bElbowLow: BOOL

Elbow down (TRUE) or top (FALSE)

bError BOOL

TRUE: Invalid values.

dA, dB: LREAL

Axis position A- resp. B-axis.

SMC_TRAFOF_Scara2

dOffsetA, dOffsetB: LREAL
Offset for A- and B-axis. Identical values like at SMC_TRAFO_Scara2.

dArmLength1, dArmLength2: LREAL
Length of first and second arm.

DriveA, DriveB: AXIS_REF
A-, B-axis.

bError: BOOL
TRUE: Invalid values.

Chapter 8 - The Library SM_Trafo.lib

SoftMotion in CoDeSys 2.3 8-11

dx, dy: LREAL
x-, y-position in geo-coordinates.

dAlpha, dBeta: LREAL
Joint angle (axis positions without offset). (for visualization)

dpx, dpy: LREAL
Standardized position of the first joint]-1..1[(for visualization)

dnx, dny: LREAL
Standardized position of the manipulator.]-1..1[(for visualization)

dR1, dR2: LREAL
Relative arm lengths. dR1+dR2 = 1.]0..1[(for visualization)

8.2.5 3-Jointed Scara-Systems

SMC_TRAFO_Scara3

pi: SMC_PosInfo
Target position vector. Output of the Interpolator.

dDirection: LREAL
Direction angle of the last joint in degrees. (0° W, 90° N)

dOffsetA, dOffsetB, dOffsetC: LREAL
Offset for A-, B- and C-axis.

dArmLength1, dArmLength2, dArmLength3: LREAL

Transformation function blocks

8-12 SoftMotion in CoDeSys 2.3

Length of the arms.

bElbowLow: BOOL
Elbow (1. and 2. joint) down (TRUE) resp. top (FALSE)

bError: BOOL
TRUE: Invalid values.

dA, dB, dC: LREAL
Axis position A-, B-, C-axis.

SMC_TRAFOF_Scara3

dOffsetA, dOffsetB, dOffsetC: LREAL
Offset for A-, B- and C-axis. Same values as described for SMC_TRAFO_Scara3.

dArmLength1, dArmLength2, dArmLength3: LREAL
Lenght of the arms.

DriveA, DriveB, DriveC: AXIS_REF
A-, B- and C-axis.

bError: BOOL
TRUE: Invalid values.

dx, dy: LREAL
x-, y-Position in Geo-coordinates.

dAlpha, dBeta, dGamma: LREAL
Joint angle (axis positions without offset). (for visualization)

dpx, dpy: LREAL
Standardized position of the first joint]-1..1[(for visualization)

dppx, dppy: LREAL
Standardized position of the second joint]-1..1[(for visualization)

dnx, dny: LREAL

Chapter 8 - The Library SM_Trafo.lib

SoftMotion in CoDeSys 2.3 8-13

Standardized position of the manipulator.]-1..1[(for visualization)

dR1, dR2, dR3: LREAL
Relative arm lengths. dR1+dR2+dR3 = 1.]0..1[(for visualization)

8.2.6 Parallel Kinematics

SMC_TRAFO_Tripod

pi: SMC_PosInfo
Target position vector. Position of the centre of the inner ring. Output of the Interpolator.

dInnerRadius: LREAL
Radius of the inner ring.

dOuterRadius: LREAL
Radius of the outer ring.

dLength: LREAL
Strut lengths.

dDistance: LREAL
Distance between two connected struts at the outer and inner ring.

dRotationOffset: LREAL
Position of axis A in angular degrees (mathematical sense) in relating to the origin (0/0).

dOffsetA, dOffsetB, dOffsetC: LREAL
Offset of the particular axes.

bError BOOL
Offset of the particular axes.

Transformation function blocks

8-14 SoftMotion in CoDeSys 2.3

dA, dB, dC: LREAL
Axis position A-, B-, C-axis.

SMC_TRAFO_Tripod

dInnerRadius, dOuterRadius, dLength, dDistance, dRotationOffset, dOffsetA, dOffsetB,
dOffsetC: LREAL
see SMC_TRAFO_TRIPOD

DriveA, DriveB, DriveC: AXIS_REF
A-, B- and C-axis.

bError: BOOL
TRUE: Invalid values.

dx, dy, dz: LREAL
x-, y-, z-Position of the centre of the inner ring in geo-coordinates.

dnx, dny: LREAL
Standardized position of the manipulator. (for visualization)

dRatioInnerOuter: LREAL
Ration of the radius of the inner ring to that of the outer ring. (for visualization)

adnxi, adnyi, adnxo, adnyo: ARRAY[0..5] OF LREAL
Standardized start and end position of the bars. (for visualization)

Chapter 8 - The Library SM_Trafo.lib

SoftMotion in CoDeSys 2.3 8-15

8.3 Spacial Transformations

In some cases the coordinate systems of the machine and the work piece differ from each other. The
transformation modules described above transform Cartesian coordinates of the work piece to
machine coordinates of the work piece. However previously it might be necessary (if the work piece is
not orientated exactly according to the CNC program), that the path coordinates calculated by the
Interpolator must be transformed before getting handed over to the machine transformation.

Imagine an usual portal (X/Y/Z). The tool point of the portal must be moved on the surface of the work
piece which is positioned transversely in the space:

There are several possibilities to describe the reference between two coordinate systems. A
coordinate transformation always is composed of a spacial translation and a spacial rotation. The
translation is described by a three-dimensional vector, the rotation is either described by three angles
(e.g. YawPitchRoll) or by the three unit vectors of the new (Object-)coordinate system x’, y’, z’.

If the method of the three rotation angles is chosen, those e.g. can be defined according to the
Roll/Pitch/Yaw (RPY) convention. In this case the new coordinate system results from the old one by a
rotation around some axes. You can imagine the RPY (α, β, γ) move in two ways, which both provide
the same result:

1. Setting out from coordinate system (x,y,z) the coordinate system is rotated around the z-axis by
angle γ in mathematically positive direction. This will result in the new coordinate system (x1, y1,
z1=z). Now fix axis y1 of the new coordinate system and rotate the coordinate system β, thus
generating (x2, y2=y1, z2). Finally rotate this resulting coordinate system around x2 by angle α. Thus
you receive (x’=x2, y’, z’).

2. Setting out from coordinate system (x,y,z) rotate the coordinate system around the x-axis by α.
Then rotate the resulting coordinate system (xa=x, ya, za) around the original y-axis (not ya!!) by β
(xb, yb, zb) and subsequently around the original z-axis by γ, by what (x’, y’, z’) will result.

SMC_CoordinateTransformation
3D

This module calculates the coordinates of a position (existing in the old coordinate system) referring to
the new coordinate system. For this purpose the coordinate transformation of the new resp. old
coordinate system is preset via translation vector and the new unit vectors.

Spacial Transformations

8-16 SoftMotion in CoDeSys 2.3

vX, vY, vZ: SMC_Vector3D

Unit vectors of the new coordinate system referring to the old one.

vTranslation: SMC_Vector3D

Translation vector. Vector from the old coordinate origin to the new origin referring to the old
coordinate system.

vIn: SMC_Vector3D

Position to be transformed.

vOut: SMC_Vector3D

Transformed position.

SMC_UnitVectorToRPY

Module for calculation of the RPY-angle (referring to the old coordinate system) from the unit vectors
of the new coordinate system.

vX, vY, vZ: SMC_Vector3D

Unit vectors of the new coordinate system referring to the old one.
dA, dB, dC: LREAL

RPY-angle in radian measure.
bError: BOOL

Invalid input values.

nError: WORD

Error description:
0 No error (bError = FALSE)
1 Vectors do not have length 1
2 Vectors are not perpendicular to each other
3 No right hand system

SMC_DetermineCuboidBearing

Module for determination of the position of a cuboid (corner mark, edge alignment) in the space by the
presetting of 6 (3/2/1) points:

Chapter 8 - The Library SM_Trafo.lib

SoftMotion in CoDeSys 2.3 8-17

A1, A2, A3: SMC_Vector3D

Three points on a end surface A of a cube, which may not lie on a line.
B1, B2: SMC_Vector3D

Two points on another end surface of the cube, whose projection on surface A may not be identical.
C1: SMC_Vector3D

Points on a further end surface of the cube.
M: SMC_Vector3D

Corner point of the cube.
vAB, vBC, vCA: SMC_Vector3D

Unit vectors on the edge lines of the cube.
bError: BOOL

Invalid input values.

nError: WORD

Error description:

0 No error (bError = FALSE)
1 A1, A2, A3 lie on a line
2 Projections of B1 and B2 on surface A are identic

Spacial Transformations

8-18 SoftMotion in CoDeSys 2.3

Chapter 9 - The Library SM_Error.lib

SoftMotion in CoDeSys 2.3 9-1

9 The Library SM_Error.lib
This library must be available in each project, because it contains all error definitions. It is used to
display each error produced by a SoftMotion module as a string.

Basically the application programmer should regard that two types of error might occur in his program.
On the one hand there might be Drive errors, that are errors in the drive (e.g. lag errors, missing
power supply etc.). On the other hand there are Module errors, which are errors reported by modules
via the outputs Error und ErrorID, and which often are caused by an incorrect parameterizing.

Drive errors must be read via MC_ReadAxisError resp. MC_ReadParameter and where appropriate
deleted via MC_Reset. Drive errors are drive specific and not standardized.

Module errors can be converted via the functions of the SM_Error.lib to strings. As these errors can
occur at all SoftMotion modules and would have to be gathered by the application, an additional
functionality has been implemented in the AXIS_REF data structure, storing a list of the lastly
occurred errors. With output FBErrorOccured of MC_ReadStatus it can be checked, whether resp.
which module error has occurred at last. Function block SMC_ReadFBError returns the error number
of the last detected error . Function SMC_ClearFBError deletes the last Error.

9.1 Function blocks

9.1.1 SMC_ErrorString

 Depending on the inputs ErrorID (SMC_Error) and Language (SMC_LANGUAGE_TYPE (english,
german)) the function SMC_ErrorString returns a string representing the error.

9.2 The enumeration SMC_Error

The enumeration SMC_Error contains all error numbers, which might be returned by SoftMotion
function blocks:

Error
no.

Module Enum value Description

0 all SMC_NO_ERROR no error

10 DriveInterface SMC_DI_SWLIMITS_EXCEEDED Position outside of permissible range
(SWLimit)

20 all motion generating
modules

SMC_REGULATOR_OR_START_NOT_
SET

Controller enable not done or brake
applied

30 DriveInterface SMC_FB_WASNT_CALLED_DURING_
MOTION

Motion-creating module has not been
called again before end of the
motion.

The enumeration SMC_Error

9-2 SoftMotion in CoDeSys 2.3

Error
no.

Module Enum value Description

31 All modules SMC_AXIS_IS_NO_AXIS_REF Given AXIS_REF variable is not of
type AXIS_REF

32 All motion generating
modules

SMC_AXIS_REF_CHANGED_DURING
_OPERATION

The fed in AXIS_REF-variable has
been exchanged while the module
was active

50 SMC_Homing SMC_3SH_INVALID_VELACC_VALUE
S

invalid velocity or acceleration values

51 SMC_Homing SMC_3SH_MODE_NEEDS_HWLIMIT Mode requests (for safety reasons)
the use of the end switches

70 SMC_SetControllerMode SMC_SCM_NOT_SUPPORTED Mode not supported

75 SMC_SetTorque SMC_ST_WRONG_CONTROLLER_MO
DE

Axis is not in correct controller mode

80 SMC_ResetAxisGroup SMC_RAG_ERROR_DURING_START
UP

Error at startup of the axisgroup

90 SMC_ChangeGearingRatio SMC_CGR_ZERO_VALUES invalid values

91 SMC_ChangeGearingRatio SMC_CGR_DRIVE_POWERED Gearing parameters may not be
changed as long as the drive is
under control

110 MC_Power SMC_P_FTASKCYCLE_EMPTY The axis does not contain any
information on the cycle time
(fTaskCycle = 0)

120 MC_Reset SMC_R_NO_ERROR_TO_RESET Axis without error

121 MC_Reset SMC_R_DRIVE_DOESNT_ANSWER Axis does not perform error-reset.

122 MC_Reset SMC_R_ERROR_NOT_RESETTABLE Error could not be reset

123 MC_Reset SMC_R_DRIVE_DOESNT_ANSWER_I
N_TIME

Communication with the axis did not
work

130 MC_ReadParameter,
MC_ReadBoolParameter

SMC_RP_PARAM_UNKNOWN Parameter number unknown

131 MC_ReadParameter,
MC_ReadBoolParameter

SMC_RP_REQUESTING_ERROR Error during transmission to the
drives; see error number in FB
instance ReadDriveParameter
(SM_DriveBasic.lib)

140 MC_WriteParameter,
MC_WriteBoolParameter

SMC_WP_PARAM_INVALID Parameter number unknown or
writing not allowed

141 MC_WriteParameter,
MC_WriteBoolParameter

SMC_WP_SENDING_ERROR See error number in module instance
WriteDriveParameter
(Drive_Basic.lib)

Chapter 9 - The Library SM_Error.lib

SoftMotion in CoDeSys 2.3 9-3

Error
no.

Module Enum value Description

170 MC_Home SMC_H_AXIS_WASNT_STANDSTILL Axis has not been in standstill state

171 MC_Home SMC_H_AXIS_DIDNT_START_HOMIN
G

Error at start of Homing-action

172 MC_Home SMC_H_AXIS_DIDNT_ANSWER Communication error

173 MC_Home SMC_H_ERROR_WHEN_STOPPING Error at stop after Homing.
Deceleration set?

180 MC_Stop SMC_MS_UNKNOWN_STOPPING_ER
ROR

Unknown error at stop

181 MC_Stop SMC_MS_INVALID_ACCDEC_VALUES Invalid velocity or acceleration values

182 MC_Stop SMC_MS_DIRECTION_NOT_APPLICA
BLE

Direction=shortest not applicable

183 MC_Stop SMC_MS_AXIS_IN_ERRORSTOP Drive is in errorstop status. Stop
cannot be executed.

201 MC_MoveAbsolute SMC_MA_INVALID_VELACC_VALUES Invalid velocity or acceleration values

202 MC_MoveAbsolute SMC_MA_INVALID_DIRECTION Direction error

226 MC_MoveRelative SMC_MR_INVALID_VELACC_VALUES Invalid velocity or acceleration values

227 MC_MoveRelative SMC_MR_INVALID_DIRECTION Direction error

251 MC_MoveAdditive SMC_MAD_INVALID_VELACC_VALUE
S

Invalid velocity or acceleration values

252 MC_MoveAdditive SMC_MAD_INVALID_DIRECTION Direction error

276 MC_MoveSuperImposed SMC_MSI_INVALID_VELACC_VALUES Invalid velocity or acceleration values

277 MC_MoveSuperImposed SMC_MSI_INVALID_DIRECTION Direction error

301 MC_MoveVelocity SMC_MV_INVALID_ACCDEC_VALUES Invalid velocity or acceleration values

302 MC_MoveVelocity SMC_MV_DIRECTION_NOT_APPLICA
BLE

Direction=shortest/fastest not
applicable

325 MC_PositionProfile SMC_PP_ARRAYSIZE Erroneous array size

326 MC_PositionProfile SMC_PP_STEP0MS Step time = t#0s

350 MC_VelocityProfile SMC_VP_ARRAYSIZE erroneous array size

351 MC_VelocityProfile SMC_VP_STEP0MS Step time = t#0s

375 MC_AccelerationProfile SMC_AP_ARRAYSIZE erroneous array size

The enumeration SMC_Error

9-4 SoftMotion in CoDeSys 2.3

Error
no.

Module Enum value Description

376 MC_AccelerationProfile SMC_AP_STEP0MS Step time = t#0s

400 MC_TouchProbe SMC_TP_TRIGGEROCCUPIED Trigger already active

401 MC_TouchProbe SMC_TP_COULDNT_SET_WINDOW DriveInterface does not support the
window function

402 MC_TouchProbe SMC_TP_COMM_ERROR Communication error

410 MC_AbortTrigger SMC_AT_TRIGGERNOTOCCUPIED Trigger already de-allocated

500 SMC_ControlAxisByPos SMC_CAP_GAP_VELACCDEC_INVALI
D

Invalid velocity or acceleration values

510 SMC_ControlAxisByPosVel SMC_CAPV_GAP_VELACCDEC_INVA
LID

Invalid velocity or acceleration values

520 SMC_ControlAxisByVel SMC_CAV_GAP_VELACCDEC_INVALI
D

Invalid velocity or acceleration values

600 SMC_CamRegister SMC_CR_NO_TAPPETS_IN_CAM CAM does not contain any tappets

601 SMC_CamRegister SMC_CR_TOO_MANY_TAPPETS Tappet-GroupID exceeds
MAX_NUM_TAPPETS

602 SMC_CamRegister SMC_CR_MORE_THAN_32_ACCESSE
S

more than 32 accesses on one
CAM_REF

625 MC_CamIN SMC_CI_NO_CAM_SELECTED no CAM selected

626 MC_CamIN SMC_CI_MASTER_OUT_OF_SCALE Master axis out of valid range

627 MC_CamIn SMC_CI_RAMPIN_NEEDS_VELACC_V
ALUES

for the ramp_in function velocity and
acceleration values must be
specified

628 MC_CamIn SMC_CI_SCALING_INCORRECT Scaling variables
fEditor/TableMasterMin/Max are not
correct

675 MC_GearIn SMC_GI_RATIO_DENOM RatioDenominator = 0

676 MC_GearIn SMC_GI_INVALID_ACC Acceleration invalid

677 MC_GearIn SMC_GI_INVALID_DEC Deceleration invalid

725 MC_Phase SMC_PH_INVALID_VELACCDEC Velocity, Deceleration- or
Acceleration values invalid

726 MC_Phase SMC_PH_ROTARYAXIS_PERIOD0 Rotation axis with fPositionPeriod = 0

750 All modules using
MC_CAM_REF as input

SMC_NO_CAM_REF_TYPE Given CAM is not of type
MC_CAM_REF

Chapter 9 - The Library SM_Error.lib

SoftMotion in CoDeSys 2.3 9-5

Error
no.

Module Enum value Description

1001 SMC_Interpolator SMC_INT_VEL_ZERO Path not unfahrbar, da Soll-
Geschwindigkeit = 0.

1002 SMC_Interpolator SMC_INT_NO_STOP_AT_END Last path object has Vel_End > 0.

1003 SMC_Interpolator SMC_INT_DATA_UNDERRUN GEOINFO-List processed in DataIn,
but end of list not set. Reason:
Forgotten to set EndOfList of the
queue in DataIn or SMC_Interpolator
is faster than the path generating
modules.

1004 SMC_Interpolator SMC_INT_VEL_NONZERO_AT_STOP Velocity at Stop > 0.

1005 SMC_Interpolator SMC_INT_TOO_MANY_RECURSIONS To much SMC_Interpolator
recursions. SoftMotion-Error.

1006 SMC_Interpolator SMC_INT_NO_CHECKVELOCITIES Input-OutQueue DataIn has not as
last processed module
SMC_CHeckVelocities

1007 SMC_Interpolator SMC_INT_PATH_EXCEEDED Internal / numeric error

1050 SMC_Interpolator2Dir SMC_INT2DIR_BUFFER_TOO_SMALL Data buffer too small

1051 SMC_Interpolator2Dir SMC_INT2DIR_PATH_FITS_NOT_IN_
QUEUE

Path does not go completely in
queue

1080 SMC_Interpolator SMC_WAR_INT_OUTQUEUE_TOO_S
MALL

Warning: OutQueue DataIn
dimensioned too small. Meeting of
stops cannot be guaranteed.

1081 SMC_Interpolator SMC_WAR_END_VELOCITIES_INCOR
RECT

Warning: End velocities inconsistent.

1100 SMC_CheckVelocities SMC_CV_ACC_DEC_VEL_NONPOSITI
VE

Velocity, Deceleration- or
Acceleration values impermissible.

1200 SMC_NCDecoder SMC_DEC_ACC_TOO_LITTLE Acceleration value impermissible.

1201 SMC_NCDecoder SMC_DEC_RET_TOO_LITTLE Acceleration value impermissible.

1202 SMC_NCDecoder SMC_DEC_OUTQUEUE_RAN_EMPTY Data underrun. Queue has been
read and is empty.

1500 All function blocks using
SMC_CNC_REF

SMC_NO_CNC_REF_TYPE The given CNC program is not of
type SMC_CNC_REF

1501 All function blocks using
SMC_OUTQUEUE

SMC_NO_OUTQUEUE_TYPE The given OutQueue is not of type
SMC_OUTQUEUE

2000 SMC_ReadNCFile SMC_RNCF_FILE_DOESNT_EXIST File does not exist

2001 SMC_ReadNCFile SMC_RNCF_NO_BUFFER No buffer allocated

The enumeration SMC_Error

9-6 SoftMotion in CoDeSys 2.3

Error
no.

Module Enum value Description

2002 SMC_ReadNCFile SMC_RNCF_BUFFER_TOO_SMALL Buffer too small

2003 SMC_ReadNCFile SMC_RNCF_DATA_UNDERRUN Data underrun. Buffer has been
read, is empty.

2004 SMC_ReadNCFile SMC_RNCF_VAR_COULDNT_BE_REP
LACED

placeholder variable could not be
replaced

2050 SMC_ReadNCQueue SMC_RNCQ_FILE_DOESNT_EXIST File could not be opened.

2051 SMC_ReadNCQueue SMC_RNCQ_NO_BUFFER no buffer defined.

2052 SMC_ReadNCQueue SMC_RNCQ_BUFFER_TOO_SMALL Buffer too small.

2053 SMC_ReadNCQueue SMC_RNCQ_UNEXPECTED_EOF unexpected end of file.

2100 SMC_AxisDiagnosticLog SMC_ADL_FILE_CANNOT_BE_OPENE
D

File could not be opened

2101 SMC_AxisDiagnosticLog SMC_ADL_BUFFER_OVERRUN Buffer-overrun; WriteToFile must be
called more frequently

2200 SMC_ReadCAM SMC_RCAM_FILE_DOESNT_EXIST File could not be opened.

2201 SMC_ReadCAM SMC_RCAM_TOO_MUCH_DATA saved CAM to big.

2202 SMC_ReadCAM SMC_RCAM_WRONG_COMPILE_TYP
E

wrong compilation mode

2203 SMC_ReadCAM SMC_RCAM_WRONG_VERSION File has wrong version

2204 SMC_ReadCAM SMC_RCAM_UNEXPECTED_EOF unexpected end of file

3001 SMC_WriteDriveParamsTo
File

SMC_WDPF_CHANNEL_OCCUPIED Parameter selection channel is
occupied

3002 SMC_WriteDriveParamsTo
File

SMC_WDPF_CANNOT_CREATE_FILE File could not be created

3003 SMC_WriteDriveParamsTo
File

SMC_WDPF_ERROR_WHEN_READIN
G_PARAMS

Error at reading of the parameters

3004 SMC_WriteDriveParamsTo
File

SMC_WDPF_TIMEOUT_PREPARING_
LIST

Timeout during preparing the
parameter list

5000 SMC_Encoder SMC_ENC_DENOM_ZERO Nominator of the conversion factor
(dwRatioTechUnits Denom) of the
Encoder reference is 0.

5001 SMC_Encoder SMC_ENC_AXISUSEDBYOTHERFB Other module trying to process
motion on the Encoder axis

Chapter 10 - The library SM_FileFBs.lib

SoftMotion in CoDeSys 2.3 10-1

10 The library SM_FileFBs.lib

10.1 Overview

This library provides modules for the file functionality. They can only be used, if the 3S system
libraries SysLibFile.lib and Standard.lib are also available.

10.2 CNC function blocks

SMC_ReadNCQueue

This module reads an OutQueue file, which has been created by the CNC editor (see chapter 3.3),
from the PLC file system and provides an OutQueue structure, which typically is processed by the
Interpolator.

Inputs of the module:

bExecute: BOOL
At a rising edge the module starts with reading the queue.

sFileName: STRING(80)
File path and - name.

pBuffer: POINTER TO BYTE
Pointer on a sufficiently large, free data area (buffer) which is allocated in the IEC application.

dwBufferSize: DWORD
Size of the buffer in Byte.

Outputs of the module:

bDone: BOOL
Gets set after the queue has been read completely.

bError: BOOL
TRUE: Error has occurred.

ErrorID: SMC_ERROR
Error number.

poqDataOut: POINTER TO SMC_OUTQUEUE
Pointer on a queue which has been read in.

iObjectsRead: UDINT
Number of the SMC_GeoInfo objects which have been read and written to the queue up to now.

CNC function blocks

10-2 SoftMotion in CoDeSys 2.3

SMC_ReadNCFile

This module reads a NC-ASCII-file from the file system of the controller, in order to make it available
for the SMC_NCDecoder. Thus at runtime a NC program can be read in and realized.

Inputs of the function block:

bExecute: BOOL
At a rising edge the module starts to read in the program.

sFileName: STRING(80)
File path and name.

pvl: POINTER TO SMC_VARLIST
Pointer on a SMC_VARLIST object (see below). If no variables are used in the CNC program, this
input will not be used.

pBuffer: POINTER TO BYTE
Pointer to a free data area which is allocated in the IEC application and which is big enough.

dwBufferSize: DWORD
Size of the data area in Bytes.

Outputs of the function block:

bDone: BOOL
Is set as soon as the program has been read in completely.

bError: BOOL
TRUE: Error occurred.

ErrorID: SMC_ERROR
Error number.

bExecuteDecoder: BOOL
Signal, which should trigger the input Execute of the SMC_NCDecoder module.

ncprog: SMC_CNC_REF
CNC program. Input of the succeeding SMC_NCDecoder module.

SMC_VARLIST structure

The standard IEC1131-3 does not describe a possibility to acquire the value of a variable from its
symbolic name, which e.g. is be available as a string. This however is necessary, if the variable
functionality (see 3.2), which is available for the user by compile option ‚Create program variable on
compile’ (see 3.7), also should be available for reading in the CNC program from a file. This can be
managed by using the structure SMC_VARLIST. It provides a variable wNumberVars, which contains
the number of all used variables as well as a pointer psvVarList on the first element of an array of
SMC_SingleVar, which contains the variable description and values. A SMC_SingleVar object
contains the string strVarName, which provides the name of the variable, as used in the NC program,
in capital letters. Besides that the object provides the value of the variable, which can be used
depending on the type as DINT (diValue) or REAL (fValue) parameter.

Chapter 10 - The library SM_FileFBs.lib

SoftMotion in CoDeSys 2.3 10-3

An example:

In the NC program which is read by using SMC_ReadNCFile from a file, there are two variables
g_fTestX (REAL) and g_byCommand (BYTE):

N0 G$g_byCommand$ Xg_fTestX

So you have to define the following variables:
 asv: ARRAY[0..1] OF SMC_SingleVar :=

 (strVarName:='G_BYCOMMAND', diValue:=1, fValue:=1.0),

 (strVarName:='G_FTESTX', diValue:=0, fValue:=-1000.0);

 vl: SMC_VarList:=(wNumberVars:=2);

Before calling module SMC_ReadNCFile, whose pvl-inputs then will be fed with ADR(vl), you can
change the values of the variables; e.g. in order to modify g_fTestX :
 asv[1].fValue:=1050;

and you must define the assignment between SMC_VarList and AMC_SingleVar:
 vl.psvVarList := ADR(asv[0]);

If a variable cannot be replaced, an error will be dumped and the module will abort.

10.3 CAM Function Blocks

SMC_ReadCAM

This module is used to load a CAM, which has been created in the CAM editor and has been saved in
a *.CAM file (see chapter 4.4.3), at runtime and to make it available for the modules
MC_CamTableSelect and MC_CamIn.

The size of a loadable CAM is limited by the global constants gc_SMC_FILE_MAXCAMEL (number of
elements) and gc_SMC_FILE_MAXCAMTAP (number of CAM switch actions).

10.4 Diagnosis function blocks

SMC_AxisDiagnosticLog

This module can be used to write cyclically a selection of values of an axis to a file. A file created in
this way ideally can be used for diagnosis purposes.

As the writing of data on a data medium usually needs some time, this module stores the collected
data in a buffer of size 5kByte and the data will not be written until module action WriteToFile is
called. This action call should be placed in a slower (ca. 50 ms) task of lower priority, in order to not
hinder the actual motion task and not to disturb the motion behaviour. As soon as the buffer exceeds
the module will create an error output.

Diagnosis function blocks

10-4 SoftMotion in CoDeSys 2.3

Inputs of the module:

bExecute: BOOL
At a rising edge the module starts processing. If there is already a file with the same name, this will be
overwritten.

bCloseFile: BOOL
The module closes the file as soon as this input gets TRUE.

sFileName: STRING(80)
File path and –name.

bSetPosition, bActPosition, bSetVelocity, bActVelocity, bSetAcceleration, bActAcceleration:
BOOL
These inputs define whether the associated values of the axis should be written to the file.

bySeparatorChar: BYTE (Default: TAB)
ASCII-Code of the letter, which should be written between two values of same date.

sRecordSeparatorString: STRING(3) (Default: ‚RN’)
String, which should be written at the end of a date.

Axis: AXIS_REF;
Axis, which should be controlled.

Outputs of the module:

bDone BOOL
TRUE: Logging terminated, file closed.

bError: BOOL
TRUE: Error occurred

ErrorID: SMC_ERROR
Error number

bRecording: BOOL
TRUE: Module is recording.

Chapter 11 - Programming Examples

SoftMotion in CoDeSys 2.3 11-1

11 Programming Examples

11.1 Overview

For controlling a drive hardware with a CoDeSys project and via SoftMotion, the following items have
to be regarded:

• The SoftMotion functionality must be activated in the target settings, tab 'General'.

• The libraries Drive_Basic.lib and the manufacturer specific <BusInterfaceBezeichnung>Drive.lib
must be included in the CoDeSys project so that the Drive Interface can be used for the
communication with the drives.

• In the Drive Interface(PLC Configuration) the structure of the drive hardware must be mapped and
parameterized; after a compilation of the project then automatically the appropriate global variables
will be created.

• A Task configuration must be created.

• An IEC program has to be created (in a CoDeSys editor), which processes the desired movements
by calling the appropriate modules. In order to have available the appropriate SoftMotion functions,
the libraries SM_CNC.lib resp. SM_PLCopen.lib must be included in the CoDeSys project. In the
CNC- resp. CAM-Editor multi-axis-movements resp. CAMs for the controlling of the drives can be
programmed graphically and in character-based format; out of this programs CoDeSys then will
automatically create the corresponding data structures (CNC Data, CAM Data), which can be
accessed by the IEC program.

See the following programming examples:
- Drive Interface: Create PLC Configuration, chapter 2.1

- Single-Axis Motion Control, chapter 11.3

- Single-Axis Motion Control in CFC with Visualization-Template, chapter 11.4

- Drive Control via CAM and a Virtual Time Axis, chapter 11.5

- Changing CAMs, chapter 11.6

- Drive Control via the CNC-Editor, chapter 11.7

- 1: Direct Creation of the Queue, chapter 11.7.1

- 2: Online Decoding, Use of Variables, chapter 11.7.2

- 3: Path Preprocessing online, chapter 11.7.3

- Dynamic SoftMotion-Programming, chapter 11.8

11.2 Example: Drive Interface: Create PLC Configuration for Drives

(See the corresponding sample project coming with SoftMotion: DriveInterface.pro, basing on the
configuration file softmotion.cfg)

This example describes how to map a given physical drive structure to the IEC program in the
CoDeSys programming system. By doing this configuration the IEC program will get access to data
structures, which can be used by the SoftMotion modules to create the desired movements.

• First open the PLC Configuration (Resources tab) and select 'Extras' 'Standard configuration'.

Example: Drive Interface: Create PLC Configuration for Drives

11-2 SoftMotion in CoDeSys 2.3

• For this example it is assumed, that a Sercos field bus is used and e.g. an ISA-Bus-Card from
Automata. Hence use the command 'Append BusInterface' in the context menu (right mouse-
button) .

• For this bus interface now the appropriate module parameters (Modulparameter) have to be set.
First define the "InterfaceType". In our example no hardware is available and we set a kind of
simulation mode by selecting "Dummy".

• Depending on the chosen InterfaceType the further parameters have to be defined: E.g. for
"Sercos (Automata)" you have to set the interrupt number in wParam1, the hardware type in
wParam2 and the base address of the card in dwParam1.

• It is assumed that the card has to serve a ring of four drives. Thus - the entry 'BusInterface' in the
configuration tree must be selected (dotted frame) – click in the configuration tree window with the
right mouse-button and select command 'Append AxisGroup':

For the AxisGroup now define the Modulparameters. First enter the name of the Task (sTask),
which will control the drives (e.g. "BusTask"), in the line below enter the cycle time of the task in
µsec, e.g. "3000". (See below for the creation of this task.)
The other AxisGroup parameters depend on which BusInterface has been chosen. In our example
wParam1 defines the baud rate in MBit (e.g. enter "2") and wParam2 defines the intensity of the
LED.

Chapter 11 - Programming Examples

SoftMotion in CoDeSys 2.3 11-3

• Create a task for the drive control with the following attributes in the Task configuration:

• Now the drives have to be inserted. We assume that there are four drives, three linear drives
serving a X-, Y-, Z- portal-system, and one drive turning the tool around the Z-axis.
Insert each drive by the command "Append Drive", which is available in the context menu when the
entry 'AxisGroup' is selected (dotted line) in the configuration tree. The names of the drives can be
modified. For this purpose click on the entry with the right mouse-button to open an edit field. For
our example choose the following names:

• Now we are going to parameterize the drives: For this purpose we open the Modulparameter-
Dialog:

• First define the ID "wDriveId" according to the drive configuration. In our example: "1", "2", "3" and
"4". In the following it will be described how the settings in tab „Module parameters“ have to be
done; much easier and self-explanatory that also can be done via the dialogs.

• The portal-drives each can be moved between -50cm and +50cm. We configure their weighting
translational. We use an increment of 10-7 m resp. 10-7m/s for all position and velocity data. Thus
all position and velocity data basically have to be evaluated with the unit "10-7m" resp. "10-7m/s".
If we want to change this to a unit of "mm/sec", we have to enter "10000" for the parameter
dwRatioTechUnitsDenom "10000" and "1" for iRatioTechUnitsNum. Due to the fact that it is a linear
drive, fPositionPeriod has no meaning. But you still have to specify the data, which will be sent and
received cyclically. For example: If we refer to master telegram, it is sufficient to choose "POS, VEL
-> POS, VEL" in the scroll list of wControlType. This will cause that cyclically the position and
velocity target values will be sent and the current position and velocity values will be received.

In order to have an additional control of any exceeding of the valid range (-50cm = -5000mm, 50
cm = 5000mm) (the application should be programmed in a way, that this is not possible at all), we
activate a control function by setting SWLimitEnable = TRUE, SWLimitNegative = -5000 and
SWLimitPositive = 5000.

Example: Single Axis Motion Control

11-4 SoftMotion in CoDeSys 2.3

• We assume a rotation of 65536 increments for the used rotatory drive can be rotated arbitrarily.
Thus we define – in order to get an internal unit of angle degrees - "65536" for
dwRatioTechUnitsDenom and "360" for iRatioTechUnitsNum. This drive for example might be
designed for turning a screwtop on a bottle. Therefore we want to send cyclically the position and
the torque values, because we later want to be able to switch - by a change of the operation mode
- from a behaviour which is controlled by the position to a behaviour which is controlled by the
torque. To do this settings select "CONFIGURABLE" for wControlType and "fSetPosition" resp.
"fSetTorque" for wCyclicDataS1 resp. wCyclicDataS2. In order to get returned the current position
set the option "fActPosition" for wCyclicDataR1.

• In order to get a program ready for an error-free compilation, a program call has to be appended
to the task "BusTask". For example create a program "Ipo", which later will do the motion control,
and call it by "BusTask".

Now compile the program, no errors should occur, and load it to the controller and start it. CoDeSys
will automatically create the following variables and structures:

→ In the Global Variables folder "Drive Configuration Data" you will find three instances of the
modules "SercosDriveExecute_Start", "SercosDriveExecute_End" and "SercosDriveInit" (elements
of the Sercos-library) with the names "AxisGroupStartCycle", "AxisGroupEndCycle" and
"AxisGroupInit", which are responsible for the communication with the drives.

→ In the Global Variables folder "Drive_Globale_Variablen" of the library "Drive_Basic.lib" there is
a structure variable g_DRIVESTRUCT, which contains all entries of the PLC Configuration, i.e. all
BusInterfaces, AxisGroups and Drives.

→ Besides that for each drive globally a structure variable has been created, e.g. "X_Drive", which
can be monitored e.g. in the Watch- and Receipt Manager. This structure can be accessed by the
SoftMotion modules and the DriveInterface will keep it up-to-date.

On this drive structures the Motion modules of the IEC program, which we will create in the following
in 'Ipo', will work.

11.3 Example: Single Axis Motion Control

(See the corresponding sample project coming with SoftMotion: PLCopenSingle.pro, basing on the
configuration file softmotion.cfg

This example shows, how a drive can be controlled via modules conforming to the PLCopen
standards:

Besides the libraries of the Drive Interfaces the library SM_PLCopen.lib must be included in the
project.

In the PLC Configuration a linear drive is defined with the name "Drive":

In the Task configuration the program "Ipo" is called, which will create a movement on the given
axis.

In the following it will be described how to create this program:

In the Object Organizer insert a program in Structured Text (ST) and fill it as follows:

Before we program a movement of the drive, we want to make sure that the driver has found and
initialized the drive. As soon as this has happened we should unblock the controller and release the
brakes if applicable. This is done by the module MC_Power:

Chapter 11 - Programming Examples

SoftMotion in CoDeSys 2.3 11-5

PROGRAM Ipo
VAR
 Init: BOOL := FALSE;
 Power: MC_Power;
END_VAR
IF NOT Init THEN
 Power(Enable:=TRUE, bRegulatorOn:=TRUE, DriveStart:=TRUE, Axis:=Drive);
 Init:= Power.Status;
ELSE
END_IF

Now the drive can be controlled by the ELSE-part of the first IF-instruction. For our current
example we want to do that via the Positioning Module MC_MoveAbsolute. For this purpose
we define an instance of this module and a target position p, which will be initialized with "100".
We call this instance in each cycle with the required parameters. As soon as the programmed
position has been reached, the Done output of the module will be set to TRUE and the Execute
input must be set to FALSE, if we want to start a new movement, because the module needs a
rising edge to start working:
...(* Continuation of the above shown program *)

ELSE
 MoveAbsolute(Execute:=TRUE, Position:=p, Velocity:=100,
 Acceleration:=100, Deceleration:=100, Axis:=Drive);
 IF MoveAbsolute.Done THEN
 MoveAbsolute(Execute:=FALSE, Axis:=Drive);
 END_IF
END_IF

Now the program can be compiled error-free, you can switch to online mode and start the program.
Monitoring the current position Drive.fActPosition in a watch list or in the Sampling Trace will show
how the drive is moving towards this position. If you force the value of p, the axis will move towards
the new target position as soon as the last one has been reached.

For a graphical monitoring of the movement visualization templates for drives are available in library
SM_DriveBasic.lib. To use those templates first go offline, create a new visualization and insert a
'visualization' element. From the list, which will show the available visualizations select „LinDrive“.
Then perform a double-click on the newly created element and in the dialog 'Visualization' in
'Placeholder...' insert the name of the drive structure (here: "Drive" as a replacement for "AXISREF“.
The visualization configured in this way will display the position of the drive:

Example: Single-Axis Motion Control in CFC with Visualization-Template

11.4 Example: Single-Axis Motion Control in CFC with Visualization-Template

(See the corresponding sample project coming with SoftMotion: PLCopenSingle2.pro, basing on the
configuration file softmotion.cfg)

Like the following example shows, instead of ST you can use any other IEC language for
programming.

This example should help to understand the start- and interrupt-mechanism of the function blocks in
the example project. Additionally the various start modes for module MC_MoveAbsolute for rotatory
drives can be tested.

Create a PLC configuration and task configuration like described for the previous example , but this
time use a rotatory drive with period 360. Program "Ipo" is written in CFC, it only contains three calls
of instances of the function blocks MC_Power (needed for activation of the axis), MC_MoveAbsolute
and MC_MoveVelocity:

Example: Single-Axis Motion Control in CFC with Visualization-Template

11-6 SoftMotion in CoDeSys 2.3

It is recommended to initialize the inputs of the modules, because then we will not need to re-insert
these values each time when we start this test application.

Additionally we create a operation visualization. We use the visualization templates which are
available in the libraries and we connect them via the placeholder-concept with the function block
instances:

Now we can compile the project without errors, we log in to the controller and start. By pressing the
Execute-input of MoveVelocity the drive should start rotating. Press Execute of MoveAbsolute to
position the drive to the set position, whereby it will be rotated in positive direction, according to the
setting 'Direction: positive'.

Chapter 11 - Programming Examples

SoftMotion in CoDeSys 2.3 11-7

This will cause an interrupt of Module MoveVelocity. Play with the modules and test various velocities
and accelerations and also test the direction modes (positive/negative/current/shortest/fastest) of
MoveAbsolute.

11.5 Drive Control via CAM and a Virtual Time Axis

(See the corresponding sample project coming with SoftMotion: PLCopenMulti.pro, basing on the
configuration file softmotion.cfg)

(Preconditions: The libraries DriveBasic.lib and SM_PLCopen.lib are included.)

The following example demonstrates how a periodic CAM can be realized on a linear drive.
Additionally it shows the tappets function.

1. First create any periodic CAM in the CoDeSys CAM-Editor (Resources tab, CAMs), which refers to
a master axis covering a range between 0 and 10 sec and which at least contains one inverting tappet
with ID1; for example:

2. In the Drive Interface (PLC Configuration) define a drive "Drive":

Example: Changing CAMs

11-8 SoftMotion in CoDeSys 2.3

 3. Create the program 'ipo' in FBD and include the calls of the following modules.
PROGRAM Ipo
VAR
Power: MC_Power;
TimeAxis : SMC_TimeAxisFB;
TableSelect: MC_CamTableSelect := (SlaveAbsolute:=TRUE);
amIn: MC_CamIn:=(StartMode:=ramp_in, VelocityDiff:=100,
Acceleration:=100, Deceleration:=100);
Tappet: SMC_GetTappetValue;
END_VAR

After the Power-module (MC_Power) for the slave axis first the time axis module will be called
(SMC_TimeAxis). Give it a period of 10 seconds, because the CAM is configured for this time . The
task cycle time must be inserted manually. TableSelect will select the desired CAM, and CamIn will
realize it. The Tappet module checks the position of the tappet. Due to the fact that the tappet is
configured 'inverted', it will switch every 10 seconds.

Now you can compile the program and start it on the controller.

In order to control the target resp. current position, create a visualization, which will help to check the
paticular modules and the position of the axes.

Regard, that the master of the CAM not only can be a virtual time axis, but of course any desired
AXIS_REF data structure. For drives which are currently on regulation, the target values will be
regarded, for drives which are not on regulation the current values.

11.6 Example: Changing CAMs

(See the corresponding sample project coming with SoftMotion: PLCopenMultiCAM.pro, basing on the
configuration file softmotion.cfg)

(Preconditions: The libraries DriveBasic.lib and SM_PLCopen.lib are included.)

This example shows how a CAM movement with two alternating CAMs can be realized. It has been
programmed in ST and performs the same actions like shown in the preceeding example. At the end
of the first CAM the MC_CamIn module sets the output bEndOfProfile, which will cause that the
currently other MC_CamTableSelect will be used and restarted together with MC_CamIn.

11.7 Example: Drive Control via the CNC-Editor

In three parts this CNC Example will show the basic structure of a possible CoDeSys IEC program,
which can realize the pathes designed in the CNC-Editor.

Like described there are two possibilities to compile and to use a CNC program.

The first part of the example shows the direct creation of an OutQueue, the second part shows the
online decoding of the program by using variables. The third part of the example shows how
additionally to use a path-preprocessing module.

11.7.1 CNC Example 1: Direct Creation of the OutQueue

(See the corresponding sample project coming with SoftMotion: CNCdirect.pro, basing on the
configuration file softmotion.cfg)

1. Creation of the NC program in the CNC-Editor:

We create an example program, which is running between x out of [0,100] and y out of [0,100].
Additionally we define the velocities and accelerations for the path and set two witch points on the
path. E.g.:

Chapter 11 - Programming Examples

SoftMotion in CoDeSys 2.3 11-9

As compile mode we choose „create OutQueue on compile“.

2. Drive Interface, PLC configuration:

Define a drive structure with 2 linear drives; the maximum velocity etc. is to be set.

3. Creation of the IEC program:

First we have to activate the drives via the MC_Power module:

A further important element is the SMC_Interpolator module. As input poqDataIn it gets the address of
the CNC program. Besides that the IEC- task cycle time must be written to dwIpoTime.

Example: Drive Control via the CNC-Editor

11-10 SoftMotion in CoDeSys 2.3

We want to control a portal system with this example program. For this reason we insert an instance
of the backward and forward transformation modules from library SM_Trafo.lib. The forward
transformation module as inputs gets the drives (the Z-drive is allocated with a otherwise not used
variable dummy of type AXIS_REF); the backward module must get the target position of the
Interpolator:

The outputs of the module, that means the axes coordinates, now must be written to the drives. For
that the function blocks SMC_ControlAxisByPos are used. Due to the fact that our application does
not guarantee continuous outputs of the Interpolator (e.g. the path ends at a point different to that
where it starts), we should activate gap avoiding functions (bAvoidGaps, fGapVelocity,
fGapAcceleration, fGapDeceleration), we should connect the StopIpo-output with the
bEmergency_Stop of the Interpolator and we should connect the Interpolator-output iStatus with the
corresponding inputs of the axes control modules.

Please regard during programming in CFC the correct order of the elements !

Chapter 11 - Programming Examples

SoftMotion in CoDeSys 2.3 11-11

4. Creating the operation and test interface:

Create a new visualization and insert two visualization elements of type 'Visualization'. The first one is
the Interpolator template, the second one is the Transformation template. They get linked to the
corresponding function block instances (here: Ipo.smci resp. Ipo.trafof) via the placeholder
functionality.

5. Starting

The program now can get compiled without errors and can be started. It will execute the CNC
program, as soon as the Execute-input of the Interpolators gets set. After having been processed
completely, an other rising edge will cause a new run.

Regard the function of the path switches, which are also displayed in the visualization of the
Interpolator module.

11.7.2 CNC Example 2: Decoding online with use of variables

(See the corresponding sample project coming with SoftMotion: CNConline.pro)

1. Creating the NC program in the CNC-Editor:

Like in the previous example we create a CNC program, but now we use two global variables g_x and
g_y. E.g.:

We choose compilation mode 'Create program variable on compile' because we are using variables
in our CNC program.

2. Drive Interface, PLC configuration:

The drive structure is the same as described in Example 1.

3. Creating the IEC program:

Due to the fact that we have chosen a different compile mode for the current example, we have to do
the decoding and path-preprocessing in the IEC program. This time-consuming process must not be
done in time with the Interpolator (reason: at each call of the Decoder a path object is created, which
typically can be used for many Interpolator calls), thus the Interpolator often is swapped out to a task
of lower priority, which is called more rarely:

Example: Drive Control via the CNC-Editor

11-12 SoftMotion in CoDeSys 2.3

The underlying mechanism: In the slow task initially about one GEOINFO-object will be created per
cycle, which is stored in the OUTQUEUE-structure of the Decoder module.

As soon as this OUTQUEUE is filled, the modules of the slow task will pause until the OUTQUEUE
isn't full any longer, this means until the fast task has processed the first GEOINFO-object and
removed it from the OUTQUEUE. In this case the modules of the slow task get active again and re-fill
the OUTQUEUE-structure. In the fast task per each cycle one path position point of that OUTQUEUE-
structure, to which the DataIn parameter of the Interpolator is currently pointing, will be calculated and
processed. Due to the fact that a GEOINFO-object generally consists of several position points, it will
take several cycles until the first GEOINFO-object has been processed completely and will be
removed by the Interpolator. Since the processing of a GEOINFO-object obviously takes more cycles
than the creating, the slow task actually can be called more rarely than the fast. However, the task
times must be defined in a way which makes sure that in the last OUTQUEUE of the slow task always
enough GEOINFO-objects are available, so that no data-underrun can occur. A data-underrun would
result if the Interpolator does not get any GEOINFO-objects from DataIn while the end of the path has
not yet been reached.

In program Path the decoding of the NC program and the velocity check are done:

The interpolating part of the IEC program nearly remains at it was, except that the data input of the
Interpolator is not the CNC program name (ADR(Example)), but the OutQueue-output of the path-
preprocessing modules (here: g_ncDecoder.poqDataOut).

Besides that function SMC_RestoreQueue should not be called.

Chapter 11 - Programming Examples

SoftMotion in CoDeSys 2.3 11-13

4. Creating the operation- and test interface:

For a visualization of the previous example it is useful to add templates of the new modules
(SMC_NCDecoder and SMC_CheckVelocities). Besides that the global variables g_x and g_y should
be editable, in order to be able to check their function later at start-up.

5. Start-up:

The program now can be compiled without errors and started. It will process the CNC program as
soon as the Execute-inputs of the Decoder and Interpolator have been set.

If you change the values of the global variables, those will be read at a re-start of the Decoder and the
path will be adjusted accordingly. Also regard the function of the Append-input of the Decoder.

11.7.3 CNC Example 3: Path-Preprocessing online

(See the corresponding sample project coming with SoftMotion: CNCprepro.pro)

We want to extend the previous example by a path-preprocessing function: The corners of the
program should be smoothed by splines. This is done by the SMC_SmoothPath module. The CNC
program must be embraced by the words G51/G50:

If we did not use variables, we could compile the program as it is as a Queue and could directly pass
it on to the Interpolator. But using variables, we must do the decoding and rounding off in the program.
For this purpose we define a new POU of type SMC_SmoothPath and call it after the Decoder:

Example: Drive Control via the CNC-Editor

11-14 SoftMotion in CoDeSys 2.3

The data input of the Interpolator module as always must be connected to the output poqDataOut of
the CheckVelocities module.

This program can get compiled without errors and will not stop - contrary to the previous one - in the
corners of the NC program, because the corners now have been smoothed by the path-preprocessing
module.

Chapter 11 - Programming Examples

SoftMotion in CoDeSys 2.3 11-15

11.8 Dynamic SoftMotion-Programming

(See the corresponding sample project coming with SoftMotion: CNCDynamicPath.pro, basing on the
configuration file softmotion.cfg)

One of the advantages of SoftMotion is, that the programmer and the user not only can influence the
processing of a path but also can create and modulate this path while the program is running. In order
to reach this the programmer just has to replace the Decoder module by an self-designed path
generator. Nevertheless the path preprocessing and especially the Interpolator can be used further on
as usual.

In order to replace the Decoder module, the OUTQUEUE-structure object must be created in another
way. It must also be filled with GEOINFO-objects, which represent the desired path, and it must be
passed on to the appropriate subsequent module (e.g. Interpolator).

Preparing steps:

• In the declaration part an OUTQUEUE-, a GEOINFO-structure object and a buffer of desired size
must be defined:

QUEUE: SMC_OUTQUEUE:=(nSize:=10000);
BUF: ARRAY[0..9999] OF BYTE;
GEO: SMC_GEOINFO:=(dT1:=0, dT2:=1, dToolRadius:=0, dVel:=100, dVel_End:=100,
Accel:=200, dDecel:=500, iObj_Nr:=0);

• In an Init-Step in the implementation part of the program the OUTQUEUE-structure must get
initialized:

QUEUE.nSize := 10000;
QUEUE.pbyBuffer := ADR(BUF[1]);

Dynamc Path-Programming

In the program body, there where you want to create the path, implement the following steps for each
GEOINFO-object:

• Set start-position (first object)

GEO.piStartPos.dX := 0;
...
...resp. copy from the preceeding object.
GEO.piStartPos := GEO.piDestPos;

• Define move-type. e.g.:

GEO.iMoveType := CCWL;
or
GEO.iMoveType := LIN;

• Set the parameters required by the chosen move-type. If you have defined a circular arc (e.g.
CCWL), do not forget to set the following parameters (see structure SMC_GEOINFO):

GEO.dP1 := 200;
GEO.dP2 := 100;
GEO.dP3 := 50;
GEO.dT1 := 0;
GEO.dT2 := 90;

• if applicable, set the start- or end-bit in InternMark for the path preprocessing (see structure
SMC_GEOINFO).

Dynamic SoftMotion-Programming

11-16 SoftMotion in CoDeSys 2.3

• Calculate the end-position:
SMC_CalcEndPnt(ADR(GEO));

• Calculate the length of the object:
SMC_CalcLengthGeo(ADR(GEO));

• Store the object to OUTQUEUE:
SMC_AppendObj(POQ:=ADR(QUEUE), PGI:=ADR(GEO));

• As soon as the path has been created completely, the OUTQUEUE-list must be closed:
QUEUE.bEndOfList := TRUE;

Regard, that, if the OUTQUEUE is full, i.e. if QUEUE.bFULL = TRUE, the program will not try any
longer to add further objects. In this case the creation of the path must be interrupted until the first
object of the OUTQUEUE has been processed. Then a further object can get appended. If you want
to avoid this case, you must define the size of OUTQUEUE sufficiently high so that all GEOINFO-
objects of the desired path can be catched by it.

The object list queue finally will be passed on first to the CheckVelocities module and finally to the
Interpolator, which will process it further on.

In this example you also see how a kinematic transformation, which is not provided by the 3S library
SM_TRAFO.lib, can be programmed manually. The modules SMC_TRAFO and SMC_TRAFOF,
which are included in the project, show this for the example of a cartesian X/Y-system.

Index

SoftMotion in CoDeSys 2.3 I

12 Index

A
angle value 2-7
Avoid loop 3-11
AXIS_REF structure 2-16
axisgroup 2-8
Axisgroup 2-2
AxisGroup 2-2

B
BusInterface 2-2

C
CAM 4-1

Edit mode 4-3
editing 4-4
Element properties 4-4
master axis 4-1
periodic 4-2
Properties 4-2
slave axis 4-1

CAM definition for SoftMotion 4-1
CAM disc

master axis 4-1
CAM Element Properties 4-6
CAM Function Blocks 10-3
CAM_REF 4-9
CAM-Editor 1-2, 4-1

Create new CAM 4-2
Definition of a CAM for SoftMotion 4-1
Insert
Select elements 4-8
Insert line 4-8
Insert point 4-8
Insert tappet 4-8
Start 4-1

CAMXYVA 4-10
CAN drive settings 2-7
CAN specific settings 2-3
Circle CCW Insert Mode 3-10
Circle CW Insert Mode 3-9
ClearFBError 9-1
CNC language 3-2
CNC program 3-5

line number 3-3
sentence 3-2
sentence number 3-2
word 3-2, 3-3
word identifier 3-2

CNC program Menu in the CNC-Editor 3-5
CNC-Editor 1-2, 3-1, 3-5

create program 3-5
Define queue size 3-6
Define start position 3-6
Delete 3-5
Divide object 3-7
Graphic Editor 3-8
Info 3-6
Invert direction 3-7
Move program 3-6

Rename CNC Program 3-5
Rotate program 3-6
Split object 3-7
Start 3-5
Stretch program 3-6
Text editor 3-8

Code Generation 2-7
Compile options 4-6
ControlAxis function blocks 2-10
Convert splines/ellipses to lines 3-10
Cycletime for axisgroup 2-2

D
Define queue size 3-6
Define start position 3-6
delete CNC program 3-5
Diagnosis 2-14
Divide object 3-7
don't compile 4-7
Drive 2-2, 2-5
Drive dialog 2-4
Drive id 2-4
Drive Interface Sample Configuration 11-1
Drive parameters 2-20
Drive.lib 2-15
DriveInterface 1-1
Driver 2-15

E
Editing Modes in the CNC-Editor 3-8
element optimized point table 4-7
Ellipses 3-10
Encoder 2-15
Encoder 2-2
Encoder settings 2-7
equidistant point table 4-7
Error handling 9-1
Error numbers 9-1
Export CAM as ASCII-table 4-7
Extras

Avoid loop 3-11
Circle CCW Insert Mode 3-10
Circle CW Insert Mode 3-9
Compile options 4-6
Convert splines/ellipses to lines 3-10
Export CAM as ASCII-table 4-7
Fit to Screen 3-10
Import CAM from ASCII table 4-7
Line Insert Mode 3-9
Read CAM from file 4-7
Renumber program 3-8, 3-10
Round off path 3-11
Select Mode 3-9
Set epsilon values 3-11
Settings 4-4, 4-6
Show bounds 4-6
Show complete CAM 4-4, 4-6
Show grid 3-10
Show Interpolation Points 3-11
Slur path 3-10
Spline Insert Mode 3-10
Step Suppress 3-11
Tool radius correction 3-10
Write CAM to file 4-7

Extras Menu in the CAM-Editor 4-6

Index

II SoftMotion in CoDeSys 2.3

F
FBErrorOcurred 9-1
File for CNC program 3-1
Fit to Screen 3-10

G
GantryCutter 8-3
global Variables in SM_CNC

lib 6-17
Graphic Editor 3-8

H
H-option 3-3

I
Info on CNC Program 3-6
Insert

Insert line in the CAM-Editor 4-8
Insert point in the CAM-Editor 4-8
Insert tappet in the CAM-Editor 4-8
New CAM 4-2
Properties 4-2
Select elements in the CAM-Editor 4-8

Insert line 4-8
Insert Menu in the CAM-Editor 4-6
Insert Mode in the CNC-Editor 3-8
Insert point 4-8
Insert tappet 4-8
Interpolation 6-14, 6-23
Invert direction 3-7
IPO_UNKNOWN 6-25

J
Jerk 2-4

L
Library

Drive_Basic.lib 2-7
Manufacturer specific Drive-Lib 2-7
SM_CNC.lib 6-1
SM_CNCDiagnostic.lib 7-1
SM_Error.lib 9-1
SM_PLCopen.lib 5-1

LinDrive 2-15
LinDrive_V 2-15
Line Insert Mode in the CNC-Editor 3-9
line number 3-3
Linear drive 2-15
Loop 6-5

M
master axis 4-1
Mathematic modules 2-7
MC_AbortTrigger 5-15
MC_AccelerationProfile 5-13
MC_CamIn 5-16
MC_CamOut 5-17
MC_CamTableSelect 5-15
MC_GearIn 5-18

MC_GearOut 5-18
MC_Home 5-5
MC_MoveAbsolute 5-6
MC_MoveAdditive 5-7
MC_MoveRelative 5-8
MC_MoveSuperImposed 5-9
MC_MoveVelocity 5-10
MC_Phasing 5-18
MC_PositionProfile 5-11
MC_Power 5-4
MC_ReadActualPosition 5-4
MC_ReadActualTorque 5-4
MC_ReadActualVelocity 5-4
MC_ReadAxisError 5-2
MC_ReadBoolParameter 5-3
MC_ReadParameter 5-3
MC_ReadStatus 5-2
MC_SetPosition 5-14
MC_Stop 5-5
MC_TouchProbe 5-14
MC_VelocityProfile 5-12
MC_WriteBoolParameter 5-3
MC_WriteParameter 5-3
Menu CNC program

Define queue size 3-6
Define start position 3-6
Delete 3-5
Divide object 3-7
Info 3-6
Invert direction 3-7
Move program 3-6
New CNC program 3-5
Rename CNC Program 3-5
Rotate program 3-6
Split object 3-7
Stretch program 3-6
Write outqueue in file 3-7

Module parameters 2-5
modulo 2-7
Modulparameter 2-2
M-option 3-3
Motion 1-1
Motion task 2-2
Move program 3-6

N
New CNC program 3-5

O
OUTQUEUE 6-17
override 6-8, 6-11

P
path object 6-18
path section 6-18
Path-preprocessing 6-6
periodic CAM 4-2
PLC Configuration for drives - Example 11-1
PLC Configuration for SoftMotion 2-2
PLCopen.lib 1-2
Point 4-4
polynomial compilation 4-7
Portal systems 8-3, 8-8

Index

SoftMotion in CoDeSys 2.3 III

Portal Systems\with Tool Offset 8-4
Position data 6-17
Position saving 6-17
Properties of a CAM 4-2

R
Read CAM from file 4-7
Reference move 2-12
Rename CNC Program 3-5
Rotate program 3-6
Rotation of a path 6-16
Rotatory drive 2-15
RotDrive 2-15
Round off path 3-11
Round path 6-8
running order 3-2

S
Scara-Systems 8-9, 8-11
Select elements in the CAM-Editor 4-8
Select Mode in the CNC-Editor 3-8, 3-9
Sercos drive settings 2-6
Sercos settings 2-2
SercosDrive.lib 2-15
Set epsilon values 3-11
Settings in the CAM-Editor 4-6
Settings of a CAM 4-2
Shifted path 6-3
Show bounds 4-6
Show complete CAM 4-6
Show Interpolation Points 3-11
sign value 2-7
Single-axis motion control 11-4
slave axis 4-1
slur path 6-6
Slur path 3-10
SM_CAN.lib 2-16
SM_CNC libraries 1-2
SM_CNC.lib 1-2, 6-1

OUTQUEUE 6-20
SM_CNCDiagnostic.lib 1-2, 7-1
SM_Error.lib 9-1
SM_Error.lib 1-2
SM_FileFBs.lib 1-2
SM_PLCopen.lib 1-1, 5-1

MC_PositionProfile 5-11
SM_Trafo.lib 1-2
SMC sgn 2-7
SMC_atan2 2-7
SMC_AvoidLoop 6-5
SMC_CalcDirectionFromVector 8-4
SMC_CAMEditor 5-19
SMC_CAMRegister 5-20
SMC_CAMTable_<variables-type>_<number of

elements>_1 4-10
SMC_CAMTable_<variable-type>_<number of

elements>_2 4-10
SMC_CAMVisu 5-19
SMC_CMC_REF 6-22
SMC_CNC_REF-data 7-1
SMC_ControlAxisByPos 2-10
SMC_ControlAxisByPosVel 2-11
SMC_ControlAxisByVel 2-11
SMC_CoordinateTransformation3D 8-15
SMC_DetermineCuboidBearing 8-16

SMC_Error 9-1
SMC_ErrorString 9-1
SMC_fmod 2-7
SMC_GCode_Word 6-23
SMC_GEOINFO 6-17, 6-18
SMC_GetAxisGroupState 2-8
SMC_GetCamSlaveSetPosition 5-19
SMC_GetMaxSetAccDec 2-14
SMC_GetMaxSetVelocity 2-14
SMC_GetTappetValue 5-21
SMC_GetTrackingError 2-14
SMC_Homing 2-12
SMC_Interpolator 6-11
SMC_Interpolator2Dir 6-15
SMC_Interpolator2Dir_SlowTask 6-16
SMC_NCDECODER 6-1
SMC_OutQueue 6-20
SMC_OutQueue-data 7-1
SMC_POSINFO 6-17
SMC_ReadCAM 10-3
SMC_ReadFBError 9-1
SMC_ReadNCQueue 10-1
SMC_ReadSetPosition 5-22
SMC_Reset 5-2
SMC_ROTATEQUEUE2D_2D 6-16
SMC_RoundPath 6-8
SMC_SetTorque 5-22
SMC_ShowCNCREF 7-1
SMC_ShowQueue 7-1
SMC_SmoothPath 6-6
SMC_TimeAxisFB 2-12
SMC_ToolCorr 6-3
SMC_TRAFO_Gantry2 8-3
SMC_TRAFO_Gantry2 8-8
SMC_TRAFO_Gantry2Tool1 8-5
SMC_TRAFO_Gantry2Tool2 8-6
SMC_TRAFO_Gantry3 8-2
SMC_TRAFO_Scara2 8-10
SMC_TRAFO_Scara3 8-11
SMC_TRAFOF_Gantry2 8-2
SMC_TRAFOF_Gantry2 8-9
SMC_TRAFOF_Gantry2Tool1 8-5
SMC_TRAFOF_Gantry2Tool2 8-7
SMC_TRAFOF_Gantry3 8-3
SMC_TRAFOF_Scara2 8-10
SMC_TRAFOF_Scara3 8-12
SMC_TRAFOV_Gantry 8-3
SMC_TRANSLATEQUEUE3D_2D 6-16
SMC_UnitVectorToRPY 8-16
SMC_VARLIST 10-2
SMC_VECTOR3D 6-17, 6-20
SMC_VECTOR6D 6-20
SMC_WriteDriveParamsToFile 2-21
SMC_XInterpolator 6-23
smooth path 6-6
SNC_ChangeGearingRatio 2-9
SNC_ISAxisGroupReady 2-8
SNC_ResetAxisGroup 2-8
SNC_SetControllerMode 2-10
SoftMotion CNC-Library 6-1
SoftMotion Drive Interface 2-1
SoftMotion_CNC_Globals 6-17
Spacial Transformation 8-15
specific settings for CAN axisgroup 2-3
Spline Insert Mode 3-10
Splines 3-10
Split object 3-7

Index

IV SoftMotion in CoDeSys 2.3

standard language 3-2
Step Suppress 3-2, 3-11
Stretch program 3-6
switch functionality 3-3

T
Tappet 4-4
Time axis 2-12
Tool radius correction 3-10, 6-3
Trafo.lib 8-3
Transformation

spacial 8-15
Transformation function blocks 8-3
Translation of a path 6-16

V
Velocity ramp mode 2-4
Virtual time axis 2-12
Visualization templates 2-15

W
word identifier 3-2
Write CAM to file 4-7
Write outqueue to file 3-7

	1 Softmotion Concept and Components Overview
	2 The SoftMotion Drive Interface
	2.1 PLC Configuration for SoftMotion
	2.1.1 BusInterface
	2.1.2 AxisGroup
	2.1.3 Drive
	2.1.4 Encoder

	2.2 SM_DriveBasic.lib and automatic Code Generation
	2.2.1 Mathematic auxiliary modules of SM_DriveBasic.lib
	2.2.2 AxisGroup modules
	SMC_IsAxisGroupReady
	SMC_GetAxisGroupState
	SMC_ResetAxisGroup

	2.2.3 Configuration Modules
	SMC_ChangeGearingRatio

	2.2.4 Controller Mode Modules
	SMC_SetControllerMode

	2.2.5 ControlAxis function blocks
	SMC_ControlAxisByPos
	SMC_ControlAxisByPosVel
	SMC_ControlAxisByVel

	2.2.6 Virtual time axis
	2.2.7 Referencing via digital hardware inputs
	SMC_Homing

	2.2.8 Diagnosis modules
	SMC_GetMaxSetVelocity
	SMC_GetMaxSetAccDec
	SMC_GetTrackingError

	2.2.9 Encoder
	2.2.10 Visualization templates
	LinDrive
	RotDrive

	2.3 Drive Driver <BusInterfaceName>Drive.lib
	2.3.1 SercosDrive.lib
	2.3.2 SM_CAN.lib

	2.4 Variables of the AXIS_REF structure
	2.5 Parameterizing of the drive
	SMC_WriteDriveParamsToFile

	3 The CNC-Editor in CoDeSys
	3.1 Overview
	3.2 Supported and extended elements of the CNC-language DIN66025
	3.3 Start, Inserting and Managing of CNC Programs
	Delete CNC program
	Rename CNC Program
	CNC-Program Info
	Define queue size
	Define start position
	Set angle leeway for stop
	Move program
	Rotate program
	Stretch program
	Invert direction
	Split object
	Read CNC program from file
	Write CNC program to file
	Import DXF file
	Write outqueue to file

	3.4 CNC Text editor
	3.5 CNC Graphic Editor
	3.6 Commands and Options in the CNC-Editor
	'Extras' 'Select Mode'
	'Extras' 'Line Insert Mode'
	'Extras' 'Circle CW Insert Mode'
	'Extras' 'Circle CCW Insert Mode'
	'Extras' 'Extras: Spline Insert Mode'
	'Extras' 'Extras: Fit to Screen'
	'Extras' 'Renumber program'
	'Extras' 'Show grid'
	'Extras' 'Convert splines/ellipses to lines'
	'Extras' 'Extras: Tool radius correction'
	'Extras' 'Slur path'
	'Extras' 'Round off path'
	'Extras' 'Avoid loop'
	'Extras' 'Extras: Step Suppress'
	'Extras' 'Extras: Show Interpolation points'
	'Extras' 'Set epsilon values…'

	3.7 Automatic structure filling in the CNC-Editor

	4 The CAM-Editor
	4.1 Overview
	4.2 Definition of a CAM for SoftMotion
	4.3 Starting the CAM-Editor and Inserting a new CAM
	Start
	'Extras' 'Create new CAM'
	CAM tree

	4.4 Editing a CAM
	4.4.1 General Editor Settings
	4.4.2 Editing the properties of a particular CAM element:
	4.4.3 Commands of the 'Extras' and 'Insert' Menus
	'Extras' 'Settings'
	'Extras' 'Show complete CAM'
	Show bounds
	Compile options
	'Extras' 'Write CAM to file’
	'Extras' 'Read CAM from file’
	'Extras' 'Export CAM as ASCIITable’
	'Extras' 'Import CAM from ASCII table’
	'Insert' 'Select elements'
	'Insert' 'Insert point'
	'Insert' 'Insert line'
	'Insert' 'Insert tappet'

	4.5 CAM data structures
	MC_CAM_REF
	SMC_CAMXYVA
	SMC_CAMTable_<variablestype>_< number of elements>_1
	SMC_CAMTable_<variabletype>_< number of elements>_2
	4.5.1 Example for a manually created CAM

	5 The Library SM_PLCopen.lib
	5.1 Overview
	5.2 PLCopen-Specification "Function blocks for motion control, Version 1.0"
	5.3 Modules for Controlling Single-Axis Motions
	MC_ReadStatus
	MC_ReadAxisError
	MC_Reset
	MC_ReadParameter, MC_ReadBoolParameter
	MC_WriteParameter, MC_WriteBoolParameter
	MC_ReadActualPosition
	MC_ReadActualVelocity
	MC_ReadActualTorque
	MC_Power
	MC_Home
	MC_Stop
	MC_MoveAbsolute
	MC_MoveAdditive
	MC_MoveRelative
	MC_MoveSuperImposed
	MC_MoveVelocity
	MC_PositionProfile
	MC_VelocityProfile
	MC_AccelerationProfile
	MC_SetPosition
	MC_TouchProbe
	MC_AbortTrigger

	5.4 Modules for Synchronized Motion Control
	MC_CamTableSelect
	MC_CamIn
	MC_CamOut
	MC_GearIn
	MC_GearOut
	MC_Phasing

	5.5 Additional Elements of the SM_PLCopen.lib
	SMC_GetCamSlaveSetPosition
	SMC_CAMEditor, SMC_CAMVisu
	SMC_CAMRegister
	SMC_GetTappetValue
	SMC_ReadSetPosition
	SMC_SetTorque

	6 The Library SM_CNC.lib
	6.1 Overview
	6.2 Modules
	6.2.1 SMC_NCDecoder
	6.2.2 SMC_ToolCorr
	6.2.3 SMC_AvoidLoop
	6.2.4 SMC_SmoothPath
	6.2.5 SMC_RoundPath
	6.2.6 SMC_CheckVelocities
	6.2.7 SMC_Interpolator
	6.2.8 SMC_Interpolator2Dir

	6.3 Auxiliary Modules for Path Rotations, Translations and Scalings
	6.4 Settings via global variables
	6.5 Structures in the SM_CNC.lib
	SMC_POSINFO
	SMC_GEOINFO
	SMC_VECTOR3D
	SMC_VECTOR6D
	SMC_OUTQUEUE and its Functions
	SMC_CNC_REF
	SMC_GCODE_WORD

	6.6 Path-CAMs with the SMC_XInterpolator
	7 The library SM_CNCDiagnostic.lib
	7.1 Function blocks for the analysis of SMC_CNC_REF data
	7.1.1 The function block SMC_ShowCNCREF

	7.2 Function blocks for analysis of SMC_OutQueue data
	7.2.1 The function block SMC_ShowQueue

	8 The Library SM_Trafo.lib
	8.1 Overview
	8.2 Transformation function blocks
	8.2.1 Portal Systems
	SMC_TRAFO_Gantry2
	SMC_TRAFOF_Gantry2
	SMC_TRAFO_Gantry3
	SMC_TRAFOF_Gantry3
	GantryCutter
	SMC_TRAFOV_Gantry

	8.2.2 Portal Systems with Tool Offset
	SMC_CalcDirectionFromVector
	SMC_TRAFO_Gantry2Tool1
	SMC_TRAFOF_Gantry2Tool1
	SMC_TRAFO_Gantry2Tool2
	SMC_TRAFOF_Gantry2Tool2

	8.2.3 H-Portal-System with stationary drives
	SMC_TRAFO_GantryH2
	SMC_TRAFOF_GantryH2

	8.2.4 2-Jointed Scara-Systems
	SMC_TRAFO_Scara2
	SMC_TRAFOF_Scara2

	8.2.5 3-Jointed Scara-Systems
	SMC_TRAFO_Scara3
	SMC_TRAFOF_Scara3

	8.2.6 Parallel Kinematics
	SMC_TRAFO_Tripod
	SMC_TRAFO_Tripod

	8.3 Spacial Transformations
	SMC_CoordinateTransformation3D
	SMC_UnitVectorToRPY
	SMC_DetermineCuboidBearing

	9 The Library SM_Error.lib
	9.1 Function blocks
	9.1.1 SMC_ErrorString

	9.2 The enumeration SMC_Error

	10 The library SM_FileFBs.lib
	10.1 Overview
	10.2 CNC function blocks
	SMC_ReadNCQueue
	SMC_ReadNCFile
	SMC_VARLIST structure

	10.3 CAM Function Blocks
	SMC_ReadCAM

	10.4 Diagnosis function blocks
	SMC_AxisDiagnosticLog

	11 Programming Examples
	11.1 Overview
	11.2 Example: Drive Interface: Create PLC Configuration for Drives
	11.3 Example: Single Axis Motion Control
	11.4 Example: Single-Axis Motion Control in CFC with Visualization-Template
	11.5 Drive Control via CAM and a Virtual Time Axis
	11.6 Example: Changing CAMs
	11.7 Example: Drive Control via the CNC-Editor
	11.7.1 CNC Example 1: Direct Creation of the OutQueue
	11.7.2 CNC Example 2: Decoding online with use of variables
	11.7.3 CNC Example 3: Path-Preprocessing online

	11.8 Dynamic SoftMotion-Programming

	12 Index

