

Instruction Manual

PCC C5

Preface

Karl E. Brinkmann GmbH reserves itself the right to change/adapt specifications and technical data without previous notification.

The safety and warning reference specified in this manual is not exhaustive. The manual and the information contained in it is made with care. KEB don't accept a guarantee for misprint or other errors or resulting damages.

The marks and product names are trade marks or registered trade marks of the respective title owners.

The information contained in the technical documentation, as well as any user-specific advice in spoken and written and through tests, are made to best of our knowledge and information about the application. However, they are considered for information only without responsibility. This also applies to any violation of industrial property rights of a third-party.

Inspection of our units in view of their suitability for the intended use must be done generally by the user. Inspections are particulary necessary, if changes are executed, which serve for the further development or adaption of our products to the applications (hardware, software or download lists). Inspections must be repeated completely, even if only parts of hardware, software or download lists are modified.

Application and use of our units in the target products is outside of our control and therefore lies exclusively in the area of responsibility of the user.

Contents

1. 1.1 1.2 1.3 1.4 1.5	Description of the unit	4 4 4 4
2. 2.1 2.2 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6	Basic module with drive interfaces Real-time clock HSP5/485 interfaces to the inverter/servo axes View of the inverter interfaces X1AX1H for the axes 1.8 Assignment of the HSP5/485 interface. HSP5 Operator with screw terminal (00F5060-9001) HSP5 Operator with RJ45 socket (00F5060-9002) Adapter cable HSP5 interface operator Comparison of the standards.	7 8 8 9
3. 3.1 3.2 3.3	In-/output module Voltage supply (X2U) Digital inputs (X2A and X2B) Digital outputs (X2C and X2D)	12 13
4 4.1 4.2 4.3 4.4 4.5	The operating unit	14 15 15
5. 5.1 5.2 5.3	Field bus interface ProfiBus DP	18 19
6. 6.1 6.2 6.3 6.3.1 6.3.2	Software Programming system CoDeSys Parameterizing system COMBIVIS Parameter description Runtime and error monitoring Ethernet parameter	222323
6.3.2 6.3.3 6.3.4 6.3.5 6.3.6 6.3.7	Real-time clock Process image Userdefinition parameter System parameter Debugging System variables	25 26 27 28
0.4	System variables	30

1. Description of the unit

1.1 Application

KEB COMBICONTROL C5 is a programmable control with direct connection upto 8 KEB frequency inverters/servo axes of the series F5. The connection to the axes is created as HSP5/485. All axes can be operated directly and synchronously with an inexpensive operator with this fast, reliable connection. Cycle times down to one millisecond are realizable. This manual describes the release of the firmware V1.3 and higher.

The axis control is programmed with the uniform IEC 61131-3 programming system CoDeSys of the 3S-Software Company, Kempten (Germany) (www.3s-software.com).

1.2 Construction

The control consists of four modules:

- · Basic module with
 - · CPU and memory
 - · internal flash file system
 - · Switching power supply
 - Real-time clock
 - HSP5/485-interfaces to the inverter/servo axes
- · Operating element with
 - Ethernet interface
 - · serial interface
 - · Control and error LED's
 - RUN/Reset switch
 - · external memory card file system
- · Input/output interface contains
 - Voltage supply connection
 - 8DI/8DO input module with
 - · eight digital inputs
 - · eight digital outputs
- Field bus interface (optional)
 - ProfiBus-DP interface

1.3 CE-certifications

This unit was tested in accordance with the generic standard EN 61000-6-2 in the range of noise immunity and corresponds to the EMC directive 89/336/EWG with changes/extensions.

1.4 Unit identification

	Material number	Description
Default	09C5B00-1000	8DI/8DO
Default	09C5B30-1000	Profibus-DP and 8DI/8DO
Enhanced 1	19C5B00-1000	8DI/8DO
Enhanced 1	19C5B30-1000	Profibus-DP and 8DI/8DO

1.5 Technical data

General	
Dimensions (HxBxT)	144 x 182 x 76 mm
Weight	approx. 600 g
Installation method	35 mm Mounting rail
Grounding	via mounting rail
Protective system (EN 60529)	IP20
Operation temperature	-1045°C (14113°F)
Storage temperature	-2570°C(-13158°F)
Climatic category (EN 60721-3-3)	3K3
Environment (IEC 664-1)	Pollution degree 2

Control	
Operating voltage control (US)	1830 V DC ±0 %
Power input control	5W max.

Digital inputs/outputs	
Wiring system	cage-clamp terminals
Operating voltage inputs/outputs (UM)	1830 V DC ±0 %
Output current max. 0,7A per channel, short-circuit proof,	
	free-wheeling diode integrated
Input voltage/current	according to IEC 61131-2 Type 1

Field bus interface (optional)	
Туре	ProfiBus DP slave
Connector	D-Sub 9 female, DIN41652 part1
Speed	9,612000 kBaud
Use	Connection to a ProfiBus Master, process data transmission, communication channel to the control and axes

Axis interface	
Туре	HSP5/485
Connector	RJ-45, 8-pole, screened
Cable	Cat 5, 100 m max.
Speed	38,4250 kBaud
Use	Connection to KEB F5 inverter/servo, process data transmission, communication channel

Ethernet interface	09C5xxx-xxxx	19C5xxx-xxxx	
Type	IEEE 802.3	IEEE802.3	
	10Base-T	10/100BaseTx	
Connector	RJ-45, 8-pole, screene	RJ-45, 8-pole, screened	
Speed	10 MBaud	10/100 MBaud	
		autocrossover	
Use	tem, debugging, visuali Connection to COMBIV adjustment, Scope)	Connection to CoDeSys (programming system, debugging, visualization) Connection to COMBIVIS (control and axis adjustment, Scope) Connection to any devices (Socket-APi)	

Serial interface	09C5xxx-xxxx	19C5xxx-xxxx
Туре	DIN66019II, RS232	DIN66019II, RS232, RS485 full/half duplex
Connector	D-Sub 9 female	
Speed	9,6115,2kBaud	
Use	Connection to COMBIVIS (control and axis adjustment, Scope) Connection to any devices (COM-APi)	

Memory of the programming system	09C5xx-xxxx	19C5xx-xxxx
Code	256 KByte, double for	8 MB, double for onli-
	online change	ne change
Data	392 KByte	12 MB
Retain	31 KByte	31 KB
Flag area	512 Byte	32 KB
Input	256 Byte	2KB
Output	256 Byte	2KB

1.6 Accessories

Operators	Material number
F5 HSP5/485, screw terminal	00F5060-9001
F5 HSP5/485, RJ45	00F5060-9002

Supply cable	Material number
Cable RS232 for COMBIVIS	0058025-001D
Cable RJ45 open end (for operator -9001), 2,5 m	00F50C3-2025
Patch cable RJ45 (for operator -9002), 5 m	00F50C3-1050

2. Basic module with drive interfaces

The basic module is mounted on a 35 mm mounting rail. The grounding occurs by the mounting rail via spring contacts on the back of the basic module. The basic module serves as carrier for the operation unit and the field bus interface as well as the input/output terminal blocks. Furthermore it contains the

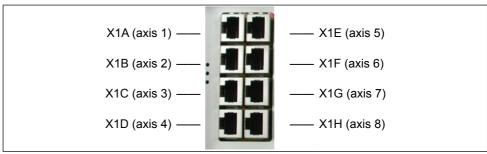
- CPU
- · Switching power supply
- Flash file system
- · Real-time clock
- HSP5/485-interfaces to the inverter/servo axes

2.1 Real-time clock

The integrated real-time clock is maintenance-free (no battery) and operates without power supply for approx.30 days. After this time it must be adjusted again. A read out parameter indicates the validity of the date and time. The control shall remain switched on min. 30 minutes for complete loading. Leap years are recognized automatically up to the year 2099. Date and time can be read and set via COMBIVIS or the control program.

2.2 HSP5/485 interfaces to the inverter/servo axes

Up to eight KEB COMBIVERT F5 can be connected via the terminals X1A to X1H. The connection occurs via reliability RS485 cables, which can be up to 100 m long. A shielded standard cable with RJ-45 connector is used on the control side and appropriate operator on the frequency inverter/servo. The process data of the required axes are exchanged by the control in the cyclic or synchronous mode. Service 50 (1*32 + 2*16 Bit process data) is used thereby. The parameter channel is free for the PLC program and COMBIVIS access to the axes. Depending on the used axes the cycle time can be between 1 and 65 ms. The process data assignment in the axes must be adjusted before starting the cyclic/synchronous operation in parameters SY.16...31 (if not stored in the axes).

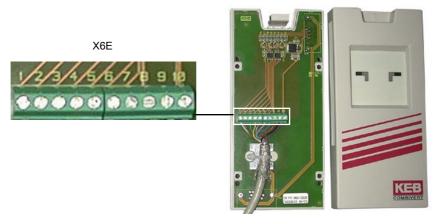

The process data are mapped-in as follows in the image of the control:

%IW8+9 %IW10 %IW11	%ID4	 Word (32 Bit) of axis 1 Word (16 Bit) of axis 1 Word (16 Bit) of axis 1 	%QD4 %QW10 %QW11	1. Word (32 Bit) to axis 1 2. Word (16 Bit) to axis 1 3. Word (16 Bit) to axis 1
%IW16+17 %IW18 %IW19	%ID8	 Word (32 Bit) of axis 2 Word (16 Bit) of axis 2 Word (16 Bit) of axis 2 	%QD8 %QW18 %QW19	1. Word (32 Bit) to axis 2 2. Word (16 Bit) to axis 2 3. Word (16 Bit) to axis 2
%IW24+25 %IW26 %IW27	%ID12	 Word (32 Bit) of axis 3 Word (16 Bit) of axis 3 Word (16 Bit) of axis 3 	%QD12 %QW26 %QW27	1. Word (32 Bit) to axis3 2. Word (16 Bit) to axis3 3. Word (16 Bit) to axis3
%IW32+33 %IW34 %IW35	%ID16	 Word (32 Bit) of axis 4 Word (16 Bit) of axis 4 Word (16 Bit) of axis 4 	%QD16 %QW34 %QW35	1. Word (32 Bit) to axis 4 2. Word (16 Bit) to axis 4 3. Word (16 Bit) to axis 4

further on next side

%IW40+41 %I %IW42 %IW43	:	1. Word (32 Bit) of axis5 2. Word (16 Bit) of axis5 3. Word (16 Bit) of axis5		1. Word (32 Bit) to axis 5 2. Word (16 Bit) to axis 5 3. Word (16 Bit) to axis 5
%IW48+49 %I %IW50 %IW51	:	1. Word (32 Bit) of axis 6 2. Word (16 Bit) of axis 6 3. Word (16 Bit) of axis 6	%QD24 %QW50 %QW51	1. Word (32 Bit) to axis 6 2. Word (16 Bit) to axis 6 3. Word (16 Bit) to axis 6
%IW56+57 %I %IW58 %IW59	:	1. Word (32 Bit) of axis 7 2. Word (16 Bit) of axis 7 3. Word (16 Bit) of axis 7	%QD28 %QW58 %QW59	 Word (32 Bit) to axis 7 Word (16 Bit) to axis 7 Word (16 Bit) to axis 7
%IW64+65 %I %IW66 %IW67	:	1. Word (32 Bit) of axis 8 2. Word (16 Bit) of axis 8 3. Word (16 Bit) of axis 8	%QD32 %QW66 %QW67	1. Word (32 Bit) to axis 8 2. Word (16 Bit) to axis 8 3. Word (16 Bit) to axis 8

2.2.1 View of the inverter interfaces X1A...X1H for the axes 1..8



2.2.2 Assignment of the HSP5/485 interface

X1AH	Name	Description	Socket (top	view)
1	TXD+	Transmission signal+	1	0
2	TXD-	Transmission signal-	I	0
3	GND	Reference potential		
4	RXD+	Receive signal+		
5	RXD-	Receive signal-		
6		Reference potential		
7	EnTXD+	Handshake transmission		
		signal+		
8	EnTXD-	Handshake transmission		
		signal-		
-	Shielding	Shielding		

2.2.3 HSP5 Operator with screw terminal (00F5060-9001)

X6E	Name	Description	
1	TXD-	Transmission signal-	
2	TXD+	Transmission signal+	
3	RXD-	Receive signal-	
4	RXD+	Receive signal+	■ No cables may be connected
5	EnTXD-	Handshake transmission signal-	to terminal VCC. High voltage
6	EnTXD+	Handshake transmission signal+	can destroy the interface in the
7	EnRxD-	Handshake receive signal-	control.
8	EnRxD+	Handshake receive signal+	
9	GND	Reference potential	
10	VCC	+24 V voltage output	
-	Shielding	Shielding (see figure)	

2.2.4 HSP5 Operator with RJ45 socket (00F5060-9002)

RJ45	Name	Description	
1	RXD+	Receive signal+	
2	RXD-	Receive signal-	1/2 /
3	GND	Reference potential	1 2 ~ //
4	TXD+	Transmission signal+	
5	TXD-	Transmission signal-	
6	GND	Reference potential	
7	EnRxD+	Handshake receive signal+	ASS I
8	EnRxD-	Handshake receive signal-	
-	Shielding	Shielding	

The connection to the control is realized with a commercial CAT5 Patch cable for this operator.

2.2.5 Adapter cable HSP5 interface operator

Screw terminal:

Color				se	e below				CE DCC
Signal	TXD+	TXD-	GND	RXD+	RXD-	GND	EnTXD+	EnTXD-	C5 PCC X1AH
PIN	1	2	3	4	5	6	7	8	Λ ΙΑП
PIN	4	3	9	2	1	9	8	7	Onorotor
Signal	RXD+	RXD-	GND	TXD+	TXD-	GND	EnRxD+	EnRxD-	Operator X6E
Color		see below							X0E

RJ45 connection:

Color				see	e below	,			C5 PCC
Signal	TXD+	TXD-	GND	RXD+	RXD-	GND	EnTXD+	EnTXD-	X1AH
PIN	1	2	3	4	5	6	7	8	AIAII
PIN	1	2	3	4	5	6	7	8	Operator
Signal	RXD+	RXD-	GND	TXD+	TXD-	GND	EnRxD+	EnRxD-	Operator RJ45
Color		see below					1/040		

In case of production of own connecting cables please pay attention that the signal pairs (e.g. TxD+ and TxD -) are assigned to the corresponding twisted cables (e.g. green and green/white). Connect un-used scores always to GND.

2.2.6 Comparison of the standards

Pair	PIN	EIA/TIA568B	EIA/TIA568A	DIN 47100	IEC 189.2	USOC
3	1	orange/white	green/white	green	red	black
3	2	orange	green	yellow	orange	yellow
2	3	green/white	orange/white	grey	black	orange
1	4	blue	blue	brown	blue	red
1	5	blue/white	blue/white	white	white	green
2	6	green	orange	pink	green	brown
4	7	brown/white	brown/white	blue	yellow	grey
4	8	brown	brown	red	brown	blue

3. In-/output module

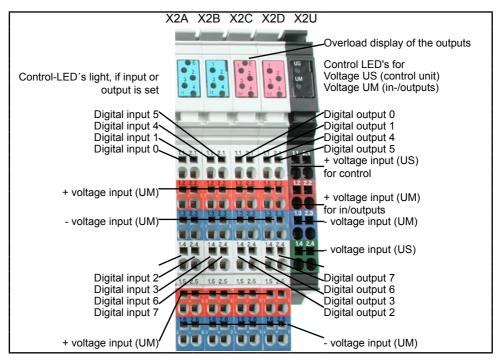


Figure 3: Connectors of the in-/output module

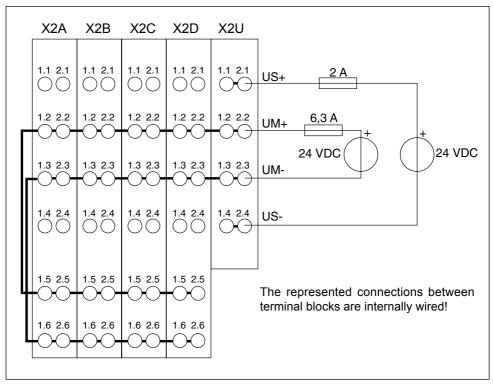
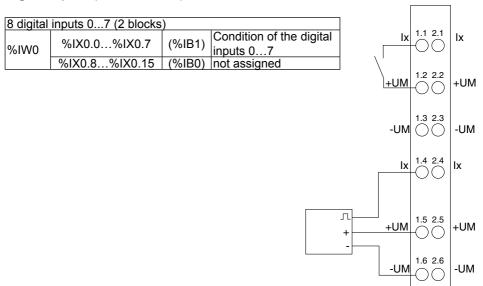
The input/output module offers place for five terminal blocks. One is individually assigned for the voltage supply of the control. The digital inputs/outputs are potential-free from supply voltage.

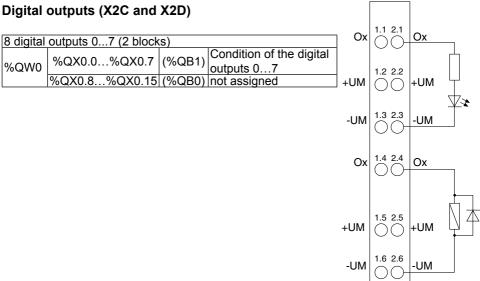
3.1 Voltage supply (X2U)

Voltage supply for the control (US)

Voltage supply for the inputs and outputs (UM)

	%IX1.0	Condition of the supply voltage in/outputs (UM)
%IW1	%IX1.1	Is set in case of overload at one or several outputs
	%IX1.2%IX1.15	not assigned

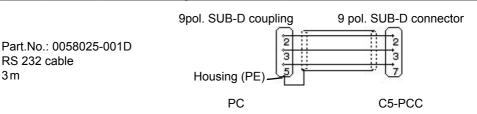




Figure 3.1: Connection of the supply voltages

Digital inputs (X2A and X2B) 3.2

3.3

The operating unit


Nama	Function	Addition	View
	Function	Addition	View
S1	Multi function switch/but-		Clear
	ton		S1 ← Stop
LD1	Run-LED	green	run
LD2	Error LED	red	LD1 LD2 LD6
LD3	Ethernet LAN /100	yellow	LD3
LD4	Ethernet Link / Data	green	
LD5	Fieldbus Data	green	
LD6	Fieldbus Ready	green	X6C X6C
X6A	Serial interface	COMBIVIS	
X6B	Ethernet interface	COMBIVIS/	3
		CoDeSys	
X6C	Fieldbus interface	Совсоус	LD4
7.00	Slide-in unit for SD or MM	C memory card	X6B
_	Olide-in drift for OD or Wilvi	O memory card	LD3
			COMBICONTROL
			C ₅
			M KES

4.1 Serial interface (X6A)

RS 232 cable

Socket X6A is a serial RS232 interface (additional RS485 at 19C5xx-xxxx). It serves for the connection of the control with a PC or other operating units via the protocol DIN66019II. Alternatively access to this interface can occur by the control program.

X6A	Name	Description	SubD-9 socket
1	PGM	No wiring!	(top view)
2	TxD	Transmission signal RS232	
3	RxD	Receive signal RS232	
4	RxD-A	Receive signal RS485 A	5 4 3 2 1
5	RxD-B	Receive signal RS485 B	5 4 3 2 1
6	PGM+	No wiring!	
7	DGND	Data reference potential	9 8 7 6
8	TxD-A	Transmission signal RS485 A	
9	TxD-B	Transmission signal RS485 B	

3m

4.2 Ethernet interface (X6B)

The standardized 10/100 base-T interface supports the protocols TCP/IP and UDP/IP. The following ports have these functions:

The CoDeSys port is adjusted to 1200 (as standard). The port can be changed with parameter Et.03. The control program is processed here by means of CoDeSys (only TCP/IP possible).

The COMBIVIS port is adjusted to 8000 (as standard). It can be changed with parameter Et.02. The access of COMBIVIS or other control/visualizations to parameters of the control, the axes as well as if necessary by the control program defined parameter occurs here. TCP or UDP is possible as protocol, at which encapsulated DIN66019II data telegrams will be transferred.

The used IP address can be adjusted with parameter Et.01. In case that a cross-over cable is used for the connection, make sure that the upper part of the IP address (network number) is the same and the lower part of the IP address (Node number) is different from the PC IP address. The IP address may not have been used in the entire connected Ethernet.

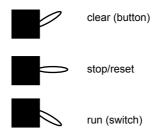
Protect C5 against unauthorized access

Each user within a network can take access to the control with knowledge of the IP address. The C5 should be absolutely protected against unauthorized access. For the protection

- the write access on the COMBIVIS port can be limited with parameter et.09.
- CoDeSys can be protected with a login-password.

4.3 Description of the LED's

Run-LED	LD1 (green)
off	PLC program stopped or not available
on	PLC program in run mode


Error LED	LD2 (red)		
off	O.K.		
on	Program error, exact error cause can be determined via CoDeSys.		
fast blinking	Hardware error, control must be restarted		

LAN-LED	LD3 (yellow)		
blinking (09C5)	Reception active via Ethernet		
off (19C5)	10MBit mode active		
on (19C5)	100MBit mode active		

Link-LED	LD4 (green)			
off	No connection to Ethernet			
on	Connection to Ethernet active			
blinking (19C5)	Reception active via Ethernet			

4.4 Multi-function switch/button S1

The multi function switch/button is constructed as follows:

The button S1 is assigned with the following functions

Activity	Function
Stop> Run	Program is started
Run> Stop	Programm is stopped, all variables are resetted (reset
	warm)
Stop> Clear and hold (> 3s)	After releasing the switch all retain variables are resetted
until LD2 lights	(reset cold)
Stop> Clear and hold (> 10 s)	All variables and the boot project are cleared (reset
until LD 1+2 light	origin) after releasing the button. If a memory card is
	plugged-in, all files are copied from the card into the in-
	ternal flash memory. Existing files (e.g. the boot project)
	are overwritten.
Stop> Clear 3 x within 2s	All files of the internal flash are copied onto a plugged-in
	memory card. Existing files are overwritten. LD2 lights
	up briefly.

4.5 File system

The file system consists of an internal built-in flash memory (drive C:) and an optionally external plugged-in memory card (drive A:). Access can occur via CoDeSys or directly from the program of the control.

Internal flash memory

This memory is accessed as drive C: and the boot project can be stored, which is automatically loaded and started when switching on. Any other files (documentation, download lists, prescriptions, etc.) can be stored and read here. The following particularities must be observed:

- · Access is possible only to files in the root directory.
- Only short file names (8.3 format) are possible.
- Reading takes place with high speed and can occur also at any time in the time-critical cyclic operating modes of the control.
- Writing occurs at a slow rate, because the flash must be programmed here. Any data can
 be written if the control is in stop condition, but only one file can be opened for writing. If
 the control is in run condition, only blocks of max. 32KByte can be written into the opened
 file. As soon as this block was completely stored in the background the next data can be
 written.
- Data is not physically deleted. First they are internal marked as deleted. Thus the free available memory space decreases. The command "fileformat" can be used via the CoDe-Sys PLC browser. Thus the complete memory is formatted again. All data is irrevocable deleted.
- The deleted memory space can be make available again with the command "filecleanup" without reformatting.

External memory card

A SD or MMC memory card of any capacity can be plugged-in into the slit-in unit of the operating unit. This memory is accessed as drive A:. Any files can be stored and read here, too. The following particularities must be observed:

- The file system is FAT16 and thereby compatible to external memory card readers and Windows operating systems.
- · Access is possible only to files in the root directory.
- Only short file names (8.3 format) are possible.
- Reading and writing is not possible in cyclic operating modes. The card is completely ignored.
- The write protection switch (at SD cards) is not considered, writing on the card is always possible.

Note:

The standard drive of C: can be changed to A: via CoDeSys PLC browser. Thus files can be written and read via CoDeSys to the internal memory or the external memory card.

5. Field bus interface ProfiBus DP

5.1 Basic data of the C5-PROFIBUS interface

The PROFIBUS interface of the C5 control is corresponding to the PROFIBUS-DP standard (DIN 19245 Part3). Now the PROFIBUS DP standard is also specified in the international standard, IEC 61158 as type 3. The present quick guide shall only describe the basic properties.

The control can be integrated into a ProfiBus network as slave via the ProfiBus-DP interface. Thereby up to 32 bytes (16 words) of process data (in and Out) as well as parameterizing data can be exchanged. Depending on the adjustment of object 5FFFh (field bus COMM Axis) the parameterizing data have access to the control (0) or to parameters of the required axis (1...8).

The ProfiBus process data are faded-in in the image of the control:

ſ	%IW72	1.	
	%IW73	2.	Prozess data word from ProfiBus master
ſ	:	:	Prozess data word from Profibus master
ſ	%IW88	16	

%QW72	1.	
%QW73	2.	process data word to DrofiPus master
:	:	process data word to ProfiBus master
%QW88	16	

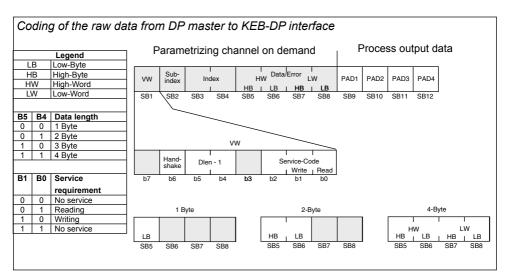
Depending on the number and data type (byte/word/Dword) this range can be adapted in the control configuration with CoDeSys.

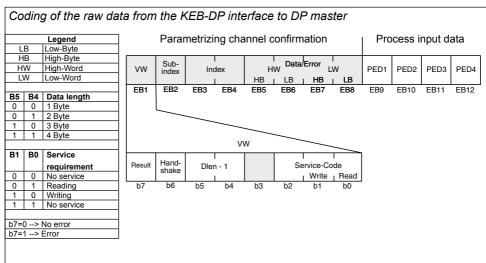
LD5	Data	Ready for operation	LD5 OO LD6
LD6	Ready	Data is transmitted by the ProfiBus master	
X6C	Name	Description	
1	-	reserved	O O
2	-	reserved	4
3	RxD/TxD-P	transmission/receive signal P	
4	-	reserved	√ . •
5	DGND	Data reference potential	್ರ್ ⊙ಿ
6	VP	supply voltage for terminating resistor	•
7	-	reserved	
8	RxD/TxD-N	transmission/receive signal N	
9	-	reserved	

Node address	adjustable via parameter SY.06		
Ident-Number	0944h		
GSD file	KEB40944.gsd		
PBS transmission	9,6 / 19,2 / 45,45 / 93,75 / 187,5 / 500 Kbit/s and 1,5 / 3 / 6 /		
speed	12 Mbit/s are automatically detected		
PBS diagnosis	6 byte occupied according to standard		
PBS parameterizing	7 byte occupied according to standard		
PBS configuration	Max. three modules can be activated (also see GSD file):		
generally	Parameterizing channel (8 byte for 8 bit raw data)		
	Process output data (116 words for 16 bit raw data)		
	Process input data (116 words for 16 bit raw data)		
Configuration of the	Parameterizing channel B7h (coding the config-bytes)		
modules	process output data with n=number of words		
E0h + (n-1) (coding the config-bytes)			
	process input data with n=number of words		
	D0h + (n-1) (coding the config-bytes)		
Process data mapping	The process data are directly copied into the process image of		
	the control:		
	Input data of the slave begins with QW72		
	Output data of the master begins with IW72		

5.2 The raw data of the KEB-PROFIBUS-DP interface

The C5 PBS interface realizes max. three modules. All modules change the raw data in the cyclic telegrams between PROFIBUS master and slave:


- Parameterizing channel: This module occupied always 8 byte raw data and serves for writing/reading of a parameter value with max.data length of 32 bit. The parameter is addressed via 16 bit index and 8 bit subindex.
- Process output data: Data, which are transmitted non-addressed from master to slave.
- Process input data: Data, which are transmitted non-addressed from slave to master.


The KEB C5 PROFIBUS-interface adjusts itself flexible to the configuration preset by the master. By this way it is possible

- to work exclusively with the parameter channel (8 byte raw data). For this the master specifies only one configuration byte with the value B7h.
- work only with process data. The master specifies two configuration bytes with values according to the process data length (see above).

If the parameter channel in the slave shall be activated, value B7h must be entered as first configuration byte. The further sequence of the configuration bytes for the process data is not predefined.

The following figures represent the raw data assignment in case the parameter channel is active and configured for process output data as well as process input data 4 byte(=2 words). Thus it results a net data length of 12 byte both for the telegram of the DP master to the slave as well as in direction from the slave to the master.

5.3 Parameters of the PROFIBUS interface

The parameters serve for the configuration of the PROFIBUS interface. The parameters are addressed via PROFIBUS by means of index (16 bit) and subindex (8 bit).

Name	Field	Fieldbus Comm Axis		
Meaning		Serves for change-over of the PROFIBUS communication between each devices, which can be addressed by the control.		
Index	5FFFI	5FFFh		
Subindex	0	0		
Data length	1 Byte	1 Byte		
Coding	0	0 The control itself is addressed.		
	18	Axis 18 is addressed		
Default	0	0		
Note		A changed value is immediately active. After switching on the parameter value is always = 0.		

Name	Parame	Parameter of the respective axis		
Meaning	set-addr	set-addressing		
Index	20005	20005FFEh		
Subindex	0	0		
Data length	1 Byte	1 Byte		
Coding	0	0 indirect set-addressing		
	1255	binary coded set-addressing set 07		

6. Software

6.1 Programming system CoDeSys

The axis control is programmed with the programming system CoDeSys of the company 3S-Software (www.3s-software.com). This programming software is free-available in the Internet. A KEB target information file (TNF) for the control is available as accessories, which contains all required hardware specifications. A library with firmware functional modules is further contained for access to the periphery (axes, real-time clock, switch, LED, file system). The use of these functional modules is explained in the provided example projects.

The connection to CoDeSys occurs via the Ethernet interface X6B via IP protocol. For this the control is connected with a 1:1 cable to the distribution system of an existing firm net or by means of a cross cable directly to the network interface of a PC. IP-address and port number can be adjusted at first via COMBIVIS. TCP/IP (Level2) is selected with the following adjustments in the CoDeSys communication parameter:

Address	(as adjusted)			
Port	1200 (or as changed)			
Block size	512			
Motorola Byteorder	Yes			

6.2 Parameterizing system COMBIVIS

The axis control can be parameterized and monitored with COMBIVIS. COMBIVIS is free-available in the Internet (www.keb.de). Access to all axes is possible via the control with COMBIVIS. The control has the node address 0, the axes have the node addresses 1 to 8. Connection with COMBIVIS occurs via Ethernet interface X6B via IP protocol or the serial interface X6A. IP-address and port number can be adjusted first via the serial interface and COMBIVIS. Afterwards the protocol TCP or UDP as well as the correct IP-address of the control is selected in the COMBIVIS IP protocol driver. The data port number is 8000, if necessary it can be changed.

The following must be observed on access to axis:

- First the axes must be switched on, then the control, or the function block 'tSetModes' must
 call-up in order to make the connection between control and axis. Thus the baud rate between
 axis and control is adjusted to the highest possible value and the axis can be accessed via
 COMBIVIS. (After power-on reset the inverter /servo starts always with 38,4 KBaud)
- If an axis is operated cyclically or synchronously, only the indirect set addressing can be used in COMBIVIS. This applies also to download and scope

Parameter description 6.3

6.3.1 Runtime and error monitoring

The ru-parameters serve for monitoring of the program flow.

ru.00	Status	Address 0200h
Program status no prog		no program loaded
	prog OK	program loaded
	prog corrupt	program checksum error
Control status run		Program runs
	Stop	Program stopped
	breakpoint	Program is on break point
Error status err_cyctime		The adjusted cycle time was exceeded
	err_watchdog	The length of the last PLC cycle exceeded the
		maximum value, the PLC program was stopped.

ru.01 cycle time	Address	0201h
------------------	---------	-------

This parameter indicates the cycle time adjusted by the PLC program in milliseconds. This value is also used for the cycle time monitoring, a value of 0 ms means a free-running PLC program without cycle time monitoring.

ru.02	axis mode	Address	0202h
The para	ameter indicates the axis confi	guration adjusted by the PLC program. The	re is a

differentiation between normal- and synchronous/cyclic operation.

ru.03	axis errors	Address	0203h
The para	The parameter indicates the axes which did not respond. This can have been releas		
interrupt	ion of the cable to the axis or I	by switching off the axis. The value 0 means	that all
monitore	ed axes are connected correct	y.	

ru.04	min. pro	cess time		Address	0204h
ru.05	max. pro	cess time		Address	0205h
ru.06	response	e time		Address	0206h
ru.07	process	time		Address	0207h
ru.08	idle time			Address	0208h
The cycl	e time of a	PLC program flow	is composed of:		
response	e time	Time of recognizing	g the new program cycle up to th	e call of the	PLC
		program			
process	time	Time, when the PL	C program as well as all accesse	es by CoDe	Sys
		and COMBIVIS are	e processed.		
idle time Remaining time up to the next program cycle.					
Paramet	Parameter ru.04 / ru.05 displays the m		inimum/maximum process time	and can be	reset
by writing	g of any va	alue.			

6.3.2 Ethernet parameter

The following parameters contain the values, which are needed for the communication via the Ethernet interface.

et.00 MAC address 0300h

The MAC address (Media Access Control) is formed of 6 byte. The first three bytes contain the manufacturer's code (00-08-FA). Only the lowest 4 bytes are displayed here "FAxxxxxx". This address is assigned by the manufacturer and cannot be changed.

et.01 IP address Address 0301h

The IP address consists of 4 bytes and is the clear identification of one Internet participant (called node by such a way). In case of doubt the network administrator gives the address to be adjusted.

When using a direct connection of control and PC with a cross cable, this IP address should be adjusted in such a way that the difference is only in the lowest byte to the address of the PC's (same network but different node).

et.02 COMBIVIS port number

Address 0302h

The port number for the access via COMBIVIS is adjusted with this parameter. The standard value is 8000 and normally it is not changed.

et.03 CoDeSys port number

Address 0303h

This parameter adjusts the port number, under which CoDeSys establishes the connection. The standard value is 1200 and normally it is not changed.

et.04 IP error count Address 0304h

Serves for the diagnosis of the IP protocol stack.

et.05 TCP connections Address 0305h

This parameter displays the number of active TCP/IP connections.

et.06 UDP connections Address 0306h

This parameter displays the number of active UDP connections.

et.07 PGM logged in Address 0307h

This parameter displays that there is an online connection to CoDeSys. A further login via CoDeSys is not possible then.

et.08 TCP multicount Address 0308h
This parameter serves only for diagnostic purposes.

et.09 data port password

Address 0309h

This parameter defines the write protection password for the COMBIVIS data port. The programming of the password occurs only via the serial interface. Then this password must be entered here again for write access via the data port. Error message "operation not possible" is displayed in case of locked data port write access. Value 0 switches off the write protection password.

et.10 gateway address

Address 030Ah

This parameter determines the IP address of the appropriate gateway. As soon as a connection to IP slave address outside the own network shall be made by the control program, this address is used. In case of doubt the gateway address to be adjusted can be ask for by the network administrator.

et.11 subnet mask

Address 030Bh

The decision whether an IP slave address is outside of the own network is determined with this mask. If this mask is 0.0.0.0 the standard masks are used depending on network class A, B or C. In case of doubt the subnet mask to be adjusted can be ask for by the network administrator.

et.12 data port response delay

Address 030Ch

This parameter adjusts the response delay for the Combivis-data port in ms. The network utilization can be reduced by setting of higher values. A value of 0 enables the fastest communication with the control, but a high network utilization is also generated.

et.14 link state (only 19C5xx-xxxx)

Address 030Eh

Displays state informations for the Ethernet link.

et.15 link mode (only 19C5xx-xxxx)

Address 030Fh

Determines the adjustments of the Ethernet interface. Fixed values or automatic recognition can be adjusted here. The additional clearlock value 32 activates a special behavior, which corrects link problems automatically with automatic detection on both sides (control and switch).

6.3.3 Real-time clock

The internal real-time clock is adjusted and/or read-out with the following parameters.

rc.00	time	Address	0400h
-------	------	---------	-------

This parameter displays the time in hours and minutes in a 24-hours format. Writing on this parameter adjusts the time.

rc.01 seconds Address 0401h

This parameter displays the seconds in a range of 0...59. Writing on this parameter adjusts the seconds.

rc.02 date Address 0402h

This parameter displays the date in a DD-MM format. Writing on this parameter adjusts the date.

rc.03 year Address 0403h

This parameter displays the year in four digits. Writing on this parameter adjusts the year.

rc.04 data valid Address 0404h

The real-time clock is running for approx. 30 days after switching off the supply. After this it must be adjusted again. If this parameter has the value "false", the date and/or time is not correct. The clock must be adjusted.

6.3.4 Process image

pi.00 inputs Address 0500h

Displays the condition of the local inputs. See section in-/output module. Set 0 displays the first word, set 1 displays the second.word, etc.

pi.01 outputs Address 0501h

Displays the condition of the local outputs. See section in-/output module. Set 0 displays the first word, set 1 displays the second.word, etc.

pi.02 axis indata 1 Address 0502h

Displays the value of the first process-input data (32 Bit) of the axes. Set 0 is for the data of axis 1, set 1 for the axis 2, etc.

pi.03 axis outdata 1 Address 0503h

Displays the value of the first process-output data (32 Bit) of the axes. Set 0 is for the data of axis 1, set 1 for the axis 2, etc.

pi.04 axis indata 2 Address 0504h

Displays the value of the second process input data (16 Bit) of the axes. Set 0 is for the data of axis 1, set 1 for the axis 2, etc.

pi.05 axis outdata 2 Address 0505h

Displays the value of the second process-output data (16 Bit) of the axes. Set 0 is for the data of axis 1, set 1 for the axis 2, etc.

pi.06 axis indata 3 Address 0506h

Displays the value of the third process-input data (16 Bit) of the axes. Set 0 is for the data of axis 1, set 1 for the axis 2, etc.

pi.07	axis outdata 3	Address	0507h

Displays the value of the third process-output data (16 Bit) of the axes. Set 0 is for the data of axis 1, set 1 for the axis 2, etc.

pi.08	fieldbus indata	Address	0508h
Displays	the value of the Fieldbus-inpu	it data. Set 0 displays the first word, set 1 di	splays

the second word, etc.

Displays the value of the Fieldbus-output data. Set 0 displays the first word, set 1 displays the second word, etc.

6.3.5 Userdefinition parameter

ud.00 program operation Address 0800h

The current program operation mode (run/stop) is displayed or adjusted here. Furthermore a reset or reset cold can be executed with this parameter.

ud.01	password	Address	0801h		
Passwoi	Password input for the corresponding user level. The following values for the password				
step are	possible:				
200	User write protection (operati	ng parameter cannot be changed)			
440	User reading/writing				
Note: Th	Note: The value for the reading/writing password can be changed with parameter ud 08				

ud.02	features		Address	0802h
Display of	of the actual disconnected spe	cial functions (e.g. SoftMotion)		

ud.03	IO module	Address	0803h
This par	ameter displays the installed I	O module.	

ud.04	fieldbus module	Address	0804h
This par	ameter displays the installed F	Fieldbus module	

ud.05	error counters rx	Address	0805h
This parameter counts the receive errors during the communication with the axes. S			
displays	the errors of axis 1, set 1 of a	xis 2 etc.	

	ud.06	error counters tx	Address	0806h
--	-------	-------------------	---------	-------

This parameter counts the errors during the transmission to each individual axis. Set 0 displays the errors of axis 1, set 1 of axis 2 etc.

ud.07 | fieldbus comm axis | Address 0807h

This parameter displays the axis, on which the field bus accesses to by parameter communication.

ud.08 user r/w password Address 0808h

Parameters with write/read password level can be changed with the password input of this parameter. The standard value is 440. This parameter can only be read/changed with a special password.

ud.09	indirect set indicator	Address	0809h
Display	and adjustment of the set indic	cator for indirect parameter access.	

ud.10	active set	Address	080Ah
Display	and adjustment of the active se	et.	

ud.11	serial number (date)	Address	080Bh
Dienlave	the date of the unit serial No.		

ud.12	serial number (counter)	Address	080Ch
Display	of the unit serial No.		

ud.13	QS number	Address	080Dh
Only for	the internal use during the pro	duction of the unit.	

6.3.6 System parameter

sy.01	software date	Address	0001h
This para	ameter displays the date of the	e installed firmware.	

sy.02	device identifier	Address	0002h
This para	This parameter displays the software-identification number (CFG-ID) for COMBIVIS		

sy.03	target-ld	Address	0003h
Displays	the CoDeSvs identification nu	imber of the control.	

sy.04	configuration selection	Address	0004h
Selection	n of internal device data.		

sy.05	configuration data	Address	0005h
Output o	of internal device data.		

sy.06	device address	Address	0006h
This parameter determines the Fieldbus address.			

sy.07	baud rate 66019II	Address	0007h	
The baud rate for the KEB DIN 66019II protocol is adjusted with this parameter.				

sy.10	C5	Address	000Ah
Display of the unit type.			

The following parameters serve for the operation of the inverter scope part of COMBIVIS.

sy.32	scope timer	Address	0020h
sy.33	scope data 1 defin.	Address	0021h
sy.34	scope data 1 set	Address	0022h
sy.35	scope data 2 defin.	Address	0023h
sy.36	scope data 2 set	Address	0024h
sy.37	scope data 3 defin.	Address	0025h
sy.38	scope data 3 set	Address	0026h
sy.39	scope data 4 defin.	Address	0027h
sy.40	scope data 4 set	Address	0028h

6.3.7 Debugging

Parameters 06xxh are only used for the diagnosis during the production process.

6.4 System variables

The following system variables are available in the PLC program:

SYSAXISMODE

Displays the axes control mode adjusted via the function block 'tSetModes'.

SYSERRORAXIS

Displays the failed monitored or cyclic/synchronous operated axes. In case of failure of an axis the red error LED at the operating unit is switched on and the event "excpt_axis_error" is released (if this event is activated). Then the control program can evaluate the defective axes in SYSERRORAXIS. Additionally this condition is displayed in parameter ru.03.

SYSCYCLETIME

Displays the axes control mode adjusted via the function block 'tSetModes'. Value 0 means that NO cycle time monitoring takes place and the PLC program is running free with a minimum of 1 ms. The cycle time determines the fixed time interval the PLC program needs for one cycle and into which the process data are exchanged with the axes during cyclic/synchronous operation.

SYSERRORCYCLETIME

The red error LED at the operating unit is switched on, when exceeding the adjusted cycle time. Event "excpt_cycle time_overflow" is released (if this Event is activated) and the system variable SYSERRORCYCLETIME is set on TRUE. Additionally this condition is displayed in parameter ru.00.

SYSWATCHDOGMAX

Determines the max. watchdog time in n*44ms. Standard value is 3, that means the program watchdog is adjusted to 132ms.

SYSERRORWATCHDOG

If a cycle of the PLC program needs longer than the maximum watchdog time (e.g. by a endless loop), then the system variable SYSERRORWATCHDOG is set to TRUE and the program is interrupted (PLC is on stop then). Additionally this condition is displayed in parameter ru.00.

SYSFIELDBUSSTATE

Displays the link state of the optional field bus module.

Profibus DP	0h	no connection
Prolibus DP	20 h	Connection OK, data transfer runs

Karl E. Brinkmann GmbH

Försterweg 36-38 • D-32683 Barntrup fon: +49 5263 401-0 • fax: +49 5263 401-116

net: www.keb.de • mail: info@keb.de

KEB Antriebstechnik GmbH & Co. KG

Wildbacher Str. 5 • D-08289 Schneeberg fon: +49 3772 67-0 • fax: +49 3772 67-281

mail: info@keb-combidrive.de

KEB Antriebstechnik Austria GmbH

Ritzstraße 8 • A-4614 Marchtrenk fon: +43 7243 53586-0 • fax: +43 7243 53586-21 net: www.keb.at • mail: info@keb.at

KEB Antriebstechnik

Herenveld 2 • B-9500 Geraadsbergen fon: +32 5443 7860 • fax: +32 5443 7898

mail: vb.belgien@keb.de

KEB Power Transmission Technology (Shanghai) Co.

Ltd - Office Room 401

No. 665 North Songwei Road (New Husong Road). Songjiang District, CHN-201613 Shanghai, P.R. China fon: +86 21 51095995 • fax: +86 21 54450115

net: www.keb.cn • mail: info@keb.cn

KEB Antriebstechnik Austria GmbH

Organizační složka K. Weise 1675/5 • CZ-370 04 České Budějovice fon: +420 387 699 111 • fax: +420 387 699 119 net: www.keb.cz • mail: info.keb@seznam.cz

KEB España

C/ Mitjer, Nave 8 - Pol. Ind. LA MASIA E-08798 Sant Cugat Sesgarriques (Barcelona) fon: +34 93 897 0268 • fax: +34 93 899 2035 mail: vb.espana@keb.de

Société Française KEB

Z.I. de la Croix St. Nicolas • 14. rue Gustave Eiffel F-94510 LA QUEUF EN BRIE fon: +33 1 49620101 • fax: +33 1 45767495

net: www.keb.fr • mail: info@keb.fr

KEB (UK) Ltd.

6 Chieftain Buisiness Park, Morris Close Park Farm, Wellingborough GB-Northants, NN8 6 XF fon: +44 1933 402220 • fax: +44 1933 400724 net: www.keb-uk.co.uk • mail: info@keb-uk.co.uk

KEB Italia S.r.I.

Via Newton, 2 • I-20019 Settimo Milanese (Milano) fon: +39 02 33535311 • fax: +39 02 33500790

net: www.keb.it • mail: kebitalia@keb.it

KEB - YAMAKYU Ltd.

15-16, 2-Chome, Takanawa Minato-ku **J**-Tokyo 108-0074 fon: +81 33 445-8515 • fax: +81 33 445-8215

mail: info@keb.ip

KEB Korea Seoul

Room 1709, 415 Missy 2000 725 Su Seo Dong, Gang Nam Gu ROK-135-757 Seoul/South Korea fon: +82 2 6253 6771 • fax: +82 2 6253 6770

mail: vb.korea@keb.de

KEB RUS Ltd.

Ferganskaya str. 8/2 RUS-109444 Moscow

fon: +007 499 972 3162 • fax: +007 499 978 9573

mail: info@keb.ru

KEB Sverige

Box 265 (Bergavägen 19) S-43093 Hälsö

fon: +46 31 961520 • fax: +46 31 961124

mail: vb.schweden@keb.de

KEB America. Inc.

5100 Valley Industrial Blvd. South USA-Shakopee, MN 55379

fon: +1 952 224-1400 • fax: +1 952 224-1499

net: www.kebamerica.com • mail: info@kebamerica.com